
Learn more from Oracle University at oracle.com/education/

Java SE 8 Programming

Student Guide – Volume II
D84838GC10
Edition 1.0 | December 2014 | D87758

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered
in any way. Except where your use constitutes "fair use" under copyright law, you
may not use, share, download, upload, copy, print, display, perform, reproduce,
publish, license, post, transmit, or distribute this document in whole or in part without
the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Authors
Anjana Shenoy
Michael Williams
Tom McGinn
Peter Fernandez

Technical Contributors
and Reviewers
Pete Daly
Sravanti Tatiraju
Nick Ristuccia
Stuart Marks
Hiroshi Hiraga
Peter Hall
Matthew Slingsby
Marcus Hirt
Irene Rusman
Joanne Sun
Marilyn Beck
Joe A Boulenouar

Editors
Aju Kumar
Malavika Jinka
Arijit Ghosh
Anwesha Ray

Graphic Designer
Divya Thallap

Publishers
Giri Venugopal
Michael Sebastian
Veena Narasimhan

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 iii

Contents

1 Introduction

Course Goals 1-2
Course Objectives 1-3
Audience 1-5
Prerequisites 1-6
Class Introductions 1-7
Course Environment 1-8
Java Programs Are Platform-Independent 1-9
Java Technology Product Groups 1-10
Java SE Platform Versions 1-11
Downloading and Installing the JDK 1-12
Java in Server Environments 1-13
The Internet of Things 1-14
The Java Community 1-15
The Java Community Process (JCP) 1-16
OpenJDK 1-17
Oracle Java SE Support 1-18
Additional Resources 1-19
Summary 1-20

2 Java Syntax and Class Review

Objectives 2-2
Java Language Review 2-3
Java Class Structure 2-4
A Simple Class 2-5
Java Naming Conventions 2-6
How to Compile and Run 2-7
How to Compile and Run: Example 2-8
Code Blocks 2-9
Primitive Data Types 2-10
Numeric Literals 2-11
Operators 2-12
Logical Operators 2-13
if else Statement 2-14
switch Statement 2-15

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 iv

while Loop 2-16
do-while Loop 2-17
for Loop 2-18
Arrays and for-each Loop 2-19
Strings 2-20
String Operations: StringBuilder 2-21
A Simple Java Class: Employee 2-22
Methods 2-23
Creating an Instance of a Class 2-24
Constructors 2-25
package Statement 2-26
import Statements 2-27
Java Is Pass-By-Value 2-29
Pass-By-Value for Object References 2-30
Objects Passed as Parameters 2-31
Garbage Collection 2-32
Summary 2-33
Practice 2-1 Overview: Creating Java Classes 2-34
Quiz 2-35

3 Encapsulation and Subclassing

Objectives 3-2
Encapsulation 3-3
Encapsulation: Example 3-4
Encapsulation: Public and Private Access Modifiers 3-5
Encapsulation: Private Data, Public Methods 3-6
Employee Class Refined 3-7
Make Classes as Immutable as Possible 3-8
Method Naming: Best Practices 3-9
Encapsulation: Benefits 3-10
Creating Subclasses 3-11
Subclassing 3-12
Manager Subclass 3-13
Constructors in Subclasses 3-14
Using super 3-15
Constructing a Manager Object 3-16
Overloading Methods 3-17
Overloaded Constructors 3-18
Overloaded Constructors: Example 3-19
Single Inheritance 3-20
Summary 3-21

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 v

Practice 3-1 Overview: Creating Subclasses 3-22
Quiz 3-23

4 Overriding Methods, Polymorphism, and Static Classes

Objectives 4-2
Using Access Control 4-3
Protected Access Control: Example 4-4
Access Control: Good Practice 4-5
Overriding Methods 4-6
Invoking an Overridden Method 4-8
Virtual Method Invocation 4-9
Accessibility of Overriding Methods 4-10
Applying Polymorphism 4-11
Using the instanceof Keyword 4-13
Overriding Object methods 4-14
Object toString Method 4-15
Object equals Method 4-16
Overriding equals in Employee 4-17
Overriding Object hashCode 4-18
Methods Using Variable Arguments 4-19
Casting Object References 4-21
Upward Casting Rules 4-22
Downward Casting Rules 4-23
static Keyword 4-24
Static Methods 4-25
Using Static Variables and Methods: Example 4-26
Implementing Static Methods 4-27
Calling Static Methods 4-28
Static Variables 4-29
Defining Static Variables 4-30
Using Static Variables 4-31
Static Initializers 4-32
Static Imports 4-33
Design Patterns 4-34
Singleton Pattern 4-35
Singleton: Example 4-36
Immutable Classes 4-37
Example: Creating Immutable class in Java 4-38
Summary 4-39
Practice 4-1 Overview: Overriding Methods and Applying Polymorphism 4-40
Practice 4-2 Overview: Overriding Methods and Applying Polymorphism 4-41

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 vi

Practice 4-3 Overview: Applying the Singleton Design Pattern 4-42
Quiz 4-43

5 Abstract and Nested Classes

Objectives 5-2
Modeling Business Problems with Classes 5-3
Enabling Generalization 5-4
Identifying the Need for Abstract Classes 5-5
Defining Abstract Classes 5-6
Defining Abstract Methods 5-7
Validating Abstract Classes 5-8
Final Methods 5-9
Final Classes 5-10
Final Variables 5-11
Declaring Final Variables 5-12
Nested Classes 5-13
Example: Member Class 5-14
Enumerations 5-15
Enum Usage 5-16
Complex Enums 5-17
Summary 5-19
Practice 5-1 Overview: Applying the Abstract Keyword 5-20
Practice 5-2 Overview: Using Inner Class As a Helper Class 5-21
Practice 5-3 Overview: Using Java Enumerations 5-22
Quiz 5-23

6 Interfaces and Lambda Expressions

Objectives 6-2
Java Interfaces 6-3
A Problem Solved by Interfaces 6-4
CrushedRock Class 6-5
The SalesCalcs Interface 6-6
Adding an Interface 6-7
Interface References 6-8
Interface Reference Usefulness 6-9
Interface Code Flexibility 6-10
default Methods in Interfaces 6-11
default Method: Example 6-12
static Methods in Interfaces 6-13
Constant Fields 6-14
Extending Interfaces 6-15

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 vii

Implementing and Extending 6-16
Anonymous Inner Classes 6-17
Anonymous Inner Class: Example 6-18
String Analysis Regular Class 6-19
String Analysis Regular Test Class 6-20
String Analysis Interface: Example 6-21
String Analyzer Interface Test Class 6-22
Encapsulate the for Loop 6-23
String Analysis Test Class with Helper Method 6-24
String Analysis Anonymous Inner Class 6-25
String Analysis Lambda Expression 6-26
Lambda Expression Defined 6-27
What Is a Lambda Expression? 6-28
Lambda Expression Shorthand 6-31
Lambda Expressions as Variables 6-32
Summary 6-33
Practice 6-1: Implementing an Interface 6-34
Practice 6-2: Using Java Interfaces 6-35
Practice 6-3: Creating Lambda Expression 6-36
Quiz 6-37

7 Generics and Collections

Objectives 7-2
Topics 7-3
Generics 7-4
Simple Cache Class Without Generics 7-5
Generic Cache Class 7-6
Generics in Action 7-7
Generics with Type Inference Diamond 7-8
Collections 7-9
Collection Types 7-10
Collection Interfaces and Implementation 7-11
List Interface 7-12
ArrayList 7-13
Autoboxing and Unboxing 7-14
ArrayList Without Generics 7-15
Generic ArrayList 7-16
Generic ArrayList: Iteration and Boxing 7-17
Set Interface 7-18
TreeSet: Implementation of Set 7-19
Map Interface 7-20

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 viii

Map Types 7-21
TreeMap: Implementation of Map 7-22
Deque Interface 7-23
Stack with Deque: Example 7-24
Ordering Collections 7-25
Comparable: Example 7-26
Comparable Test: Example 7-27
Comparator Interface 7-28
Comparator: Example 7-29
Comparator Test: Example 7-30
Summary 7-31
Practice 7-1 Overview: Counting Part Numbers by Using a HashMap 7-32
Practice 7-2 Overview: Implementing Stack by Using a Deque Object 7-33
Quiz 7-34

8 Collections, Streams, and Filters

Objectives 8-2
Collections, Streams, and Filters 8-3
The Person Class 8-4
Person Properties 8-5
Builder Pattern 8-6
Collection Iteration and Lambdas 8-7
RoboCallTest07: Stream and Filter 8-8
RobocallTest08: Stream and Filter Again 8-9
SalesTxn Class 8-10
Java Streams 8-11
The Filter Method 8-12
Method References 8-13
Method Chaining 8-14
Pipeline Defined 8-16
Summary 8-17
Practice Overview 8-18

9 Lambda Built-in Functional Interfaces

Objectives 9-2
Built-in Functional Interfaces 9-3
The java.util.function Package 9-4
Example Assumptions 9-5
Predicate 9-6
Predicate: Example 9-7
Consumer 9-8

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 ix

Consumer: Example 9-9
Function 9-10
Function: Example 9-11
Supplier 9-12
Supplier: Example 9-13
Primitive Interface 9-14
Return a Primitive Type 9-15
Return a Primitive Type: Example 9-16
Process a Primitive Type 9-17
Process Primitive Type: Example 9-18
Binary Types 9-19
Binary Type: Example 9-20
Unary Operator 9-21
UnaryOperator: Example 9-22
Wildcard Generics Review 9-23
Summary 9-24
Practice Overview 9-25

10 Lambda Operations

Objectives 10-2
Streams API 10-3
Types of Operations 10-4
Extracting Data with Map 10-5
Taking a Peek 10-6
Search Methods: Overview 10-7
Search Methods 10-8
Optional Class 10-9
Lazy Operations 10-10
Stream Data Methods 10-11
Performing Calculations 10-12
Sorting 10-13
Comparator Updates 10-14
Saving Data from a Stream 10-15
Collectors Class 10-16
Quick Streams with Stream.of 10-17
Flatten Data with flatMap 10-18
Summary 10-19
Practice Overview 10-20

11 Exceptions and Assertions

Objectives 11-2

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 x

Error Handling 11-3
Exception Handling in Java 11-4
try-catch Statement 11-5
Exception Objects 11-6
Exception Categories 11-7
Handling Exceptions 11-8
finally Clause 11-9
try-with-resources Statement 11-10
Catching Multiple Exceptions 11-11
Declaring Exceptions 11-12
Handling Declared Exceptions 11-13
Throwing Exceptions 11-14
Custom Exceptions 11-15
Assertions 11-16
Assertion Syntax 11-17
Internal Invariants 11-18
Control Flow Invariants 11-19
Class Invariants 11-20
Controlling Runtime Evaluation of Assertions 11-21
Summary 11-22
Practice 11-1 Overview: Catching Exceptions 11-23
Practice 11-2 Overview: Extending Exception and Using throw and throws 11-24
Quiz 11-25

12 Java Date/Time API

Objectives 12-2
Why Is Date and Time Important? 12-3
Previous Java Date and Time 12-4
Java Date and Time API: Goals 12-5
Working with Local Date and Time 12-6
Working with LocalDate 12-7
LocalDate: Example 12-8
Working with LocalTime 12-9
LocalTime: Example 12-10
Working with LocalDateTime 12-11
LocalTimeDate: Example 12-12
Working with Time Zones 12-13
Daylight Savings Time Rules 12-14
Modeling Time Zones 12-15
Creating ZonedDateTime Objects 12-16
Working with ZonedDateTime Gaps/Overlaps 12-17

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 xi

ZoneRules 12-18
Working Across Time Zones 12-19
Date and Time Methods 12-20
Date and Time Amounts 12-21
Period 12-22
Duration 12-23
Calculating Between Days 12-24
Making Dates Pretty 12-25
Using Fluent Notation 12-26
Summary 12-27
Practices 12-28

13 Java I/O Fundamentals

Objectives 13-2
Java I/O Basics 13-3
I/O Streams 13-4
I/O Application 13-5
Data Within Streams 13-6
Byte Stream InputStream Methods 13-7
Byte Stream OutputStream Methods 13-8
Byte Stream: Example 13-9
Character Stream Reader Methods 13-10
Character Stream Writer Methods 13-11
Character Stream: Example 13-12
I/O Stream Chaining 13-13
Chained Streams: Example 13-14
Console I/O 13-15
Writing to Standard Output 13-16
Reading from Standard Input 13-17
Channel I/O 13-18
Persistence 13-19
Serialization and Object Graphs 13-20
Transient Fields and Objects 13-21
Transient: Example 13-22
Serial Version UID 13-23
Serialization: Example 13-24
Writing and Reading an Object Stream 13-25
Serialization Methods 13-26
readObject: Example 13-27
Summary 13-28
Practice 13-1 Overview: Writing a Simple Console I/O Application 13-29

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 xii

Practice 13-2 Overview: Serializing and Deserializing a ShoppingCart 13-30
Quiz 13-31

14 Java File I/O (NIO.2)

Objectives 14-2
New File I/O API (NIO.2) 14-3
Limitations of java.io.File 14-4
File Systems, Paths, Files 14-5
Relative Path Versus Absolute Path 14-6
Java NIO.2 Concepts 14-7
Path Interface 14-8
Path Interface Features 14-9
Path: Example 14-10
Removing Redundancies from a Path 14-11
Creating a Subpath 14-12
Joining Two Paths 14-13
Symbolic Links 14-14
Working with Links 14-15
File Operations 14-16
Checking a File or Directory 14-17
Creating Files and Directories 14-19
Deleting a File or Directory 14-20
Copying a File or Directory 14-21
Moving a File or Directory 14-22
List the Contents of a Directory 14-23
Walk the Directory Structure 14-24
BufferedReader File Stream 14-25
NIO File Stream 14-26
Read File into ArrayList 14-27
Managing Metadata 14-28
Symbolic Links 14-29
Summary 14-30
Practice Overview 14-31
Quiz 14-33

15 Concurrency

Objectives 15-2
Task Scheduling 15-3
Legacy Thread and Runnable 15-4
Extending Thread 15-5
Implementing Runnable 15-6

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 xiii

The java.util.concurrent Package 15-7
Recommended Threading Classes 15-8
java.util.concurrent.ExecutorService 15-9
Example ExecutorService 15-10
Shutting Down an ExecutorService 15-11
java.util.concurrent.Callable 15-12
Example Callable Task 15-13
java.util.concurrent.Future 15-14
Example 15-15
Threading Concerns 15-16
Shared Data 15-17
Problems with Shared Data 15-18
Nonshared Data 15-19
Atomic Operations 15-20
Out-of-Order Execution 15-21
The synchronized Keyword 15-22
synchronized Methods 15-23
synchronized Blocks 15-24
Object Monitor Locking 15-25
Threading Performance 15-26
Performance Issue: Examples 15-27
java.util.concurrent Classes and Packages 15-28
The java.util.concurrent.atomic Package 15-29
java.util.concurrent.CyclicBarrier 15-30
Thread-Safe Collections 15-32
CopyOnWriteArrayList: Example 15-33
Summary 15-34
Practice 15-1 Overview: Using the java.util.concurrent Package 15-35
Quiz 15-36

16 The Fork-Join Framework

Objectives 16-2
Parallelism 16-3
Without Parallelism 16-4
Naive Parallelism 16-5
The Need for the Fork-Join Framework 16-6
Work-Stealing 16-7
A Single-Threaded Example 16-8
java.util.concurrent.ForkJoinTask<V> 16-9
RecursiveTask Example 16-10
compute Structure 16-11

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 xiv

compute Example (Below Threshold) 16-12
compute Example (Above Threshold) 16-13
ForkJoinPool Example 16-14
Fork-Join Framework Recommendations 16-15
Summary 16-16
Practice 16-1 Overview: Using the Fork-Join Framework 16-17
Quiz 16-18

17 Parallel Streams

Objectives 17-2
Streams Review 17-3
Old Style Collection Processing 17-4
New Style Collection Processing 17-5
Stream Pipeline: Another Look 17-6
Styles Compared 17-7
Parallel Stream 17-8
Using Parallel Streams: Collection 17-9
Using Parallel Streams: From a Stream 17-10
Pipelines Fine Print 17-11
Embrace Statelessness 17-12
Avoid Statefulness 17-13
Streams Are Deterministic for Most Part 17-14
Some Are Not Deterministic 17-15
Reduction 17-16
Reduction Fine Print 17-17
Reduction: Example 17-18
A Look Under the Hood 17-24
Illustrating Parallel Execution 17-25
Performance 17-36
A Simple Performance Model 17-37
Summary 17-38
Practice 17-39

18 Building Database Applications with JDBC

Objectives 18-2
Using the JDBC API 18-3
Using a Vendor’s Driver Class 18-4
Key JDBC API Components 18-5
Writing Queries and Getting Results 18-6
Using a ResultSet Object 18-7
CRUD Operations Using JDBC API: Retrieve 18-8

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

 xv

CRUD Operations Using JDBC: Retrieve 18-9
CRUD Operations Using JDBC API: Create 18-10
CRUD Operations Using JDBC API: Update 18-11
CRUD Operations Using JDBC API: Delete 18-12
SQLException Class 18-13
Closing JDBC Objects 18-14
try-with-resources Construct 18-15
Using PreparedStatement 18-16
Using PreparedStatement: Setting Parameters 18-17
Executing PreparedStatement 18-18
PreparedStatement:Using a Loop to Set Values 18-19
Using CallableStatement 18-20
Summary 18-21
Practice 18-1 Overview: Working with the Derby Database and JDBC 18-22
Quiz 18-23

19 Localization

Objectives 19-2
Why Localize? 19-3
A Sample Application 19-4
Locale 19-5
Properties 19-6
Loading and Using a Properties File 19-7
Loading Properties from the Command Line 19-8
Resource Bundle 19-9
Resource Bundle File 19-10
Sample Resource Bundle Files 19-11
Initializing the Sample Application 19-12
Sample Application: Main Loop 19-13
The printMenu Method 19-14
Changing the Locale 19-15
Sample Interface with French 19-16
Format Date and Currency 19-17
Displaying Currency 19-18
Formatting Currency with NumberFormat 19-19
Displaying Dates 19-20
Displaying Dates with DateTimeFormatter 19-21
Format Styles 19-22
Summary 19-23
Practice 19-1 Overview: Creating a Localized Date Application 19-24
Quiz 19-25

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Exceptions and Assertions

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Objectives

After completing this lesson, you should be able to:

• Define the purpose of Java exceptions
• Use the try and throw statements

• Use the catch, multi-catch, and finally clauses

• Autoclose resources with a try-with-resources statement

• Recognize common exception classes and categories

• Create custom exceptions and auto-closeable resources

• Test invariants by using assertions

Java SE 8 Programming 11 - 2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Error Handling

Applications sometimes encounter errors while executing.
Reliable applications should handle errors as gracefully as
possible. Errors:

• Should be an exception and not the expected behavior

• Must be handled to create reliable applications

• Can occur as the result of application bugs

• Can occur because of factors beyond the control of the
application
– Databases becoming unreachable

– Hard drives failing

Returning a Failure Result

Some programming languages use the return value of a method to indicate whether or not a
method completed successfully. For instance, in the C example int x = printf("hi");,
a negative value for x would indicate a failure. Many of C’s standard library functions return a
negative value upon failure. The problem is that this example could also be written as
printf("hi"); where the return value is ignored. In Java, you also have the same
concern; any return value can be ignored.

When a method you write in the Java language fails to execute successfully, consider using
the exception-generating and handling features available in the language instead of using
return values.

Java SE 8 Programming 11 - 3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Exception Handling in Java

When you are using Java libraries that rely on external
resources, the compiler will require you to “handle or declare”
the exceptions that might occur.

• Handling an exception means that you must add in a code
block to handle the error.

• Declaring an exception means that you declare that a
method may fail to execute successfully.

The Handle or Declare Rule

To use many libraries, you require knowledge of exception handling. They include:

• File IO (NIO: java.nio)

• Database access (JDBC: java.sql)

Handling an exception means that you use a try-catch statement to transfer control to an
exception-handling block when an exception occurs. Declaring an exception means to add a
throws clause to a method declaration, indicating that the method may fail to execute in a
specific way. In other words, handling means it is your problem to deal with and declaring
means that it is someone else’s problem to deal with.

Java SE 8 Programming 11 - 4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

try-catch Statement

The try-catch statement is used to handle exceptions.

try {

System.out.println("About to open a file");

InputStream in =

new FileInputStream("missingfile.txt");

System.out.println("File open");

} catch (Exception e) {

System.out.println("Something went wrong!");

}

This line is skipped if the
previous line failed to

open the file.

This line runs only if
something went wrong

in the try block.

The catch Clause

When an exception occurs inside of a try block, execution will transfer to the attached
catch block. Any lines inside the try block that appear after the exception are skipped and
are not executed. The catch clause should be used to:

• Retry the operation

• Try an alternate operation

• Gracefully exit or return

Avoid having an empty catch block. Silently swallowing an exception is a bad practice.

Java SE 8 Programming 11 - 5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Exception Objects

A catch clause is passed as a reference to a
java.lang.Exception object.

The java.lang.Throwable class is the parent class for
Exception and it outlines several methods that you may use.

try{

//...

} catch (Exception e) {

System.out.println(e.getMessage());

}

Logging Exceptions

When things go wrong in your application, you will often want to record what happened. Java
developers have a choice of several logging libraries including Apache's Log4j and the built-in
java.util logging framework. Although these logging libraries are beyond the scope of this
course, you may notice that IDEs such as NetBeans recommend that you should remove any
calls to printStackTrace(). This is because production-quality applications should use a
logging library instead of printing debug messages to the screen.

Using getMessage() and printStackTrace()

• printStackTrace(): When debugging, stack traces are very useful, because they tell
you exactly where the exception happened and what the sequence of method calls is up
to the point where the exception was thrown. So a stack trace helps to track down the
cause of the exception.

• getMessage(): When you only want to know what the error message is and do not
want the full stack trace, you can get the message of the exception.

Users of your application should not deal with a stack trace full of technical information,
instead they should just with an error message. Therefore, it is preferable to use
getMessage() rather than printStackTrace().

Java SE 8 Programming 11 - 6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Exception Categories

The java.lang.Throwable class forms the basis of the
hierarchy of exception classes. There are two main categories
of exceptions:

• Checked exceptions,
which must be “handled
or declared”

• Unchecked exceptions,
which are not typically
“handled or declared”

Throwable

Error Exception

RuntimeException SQLException IOException

ArithmeticException FileNotFoundException

Dealing with Exceptions

When an Exception object is generated and passed to a catch clause, it is instantiated
from a class that represents the specific type of problem that occurred. These exception-
related classes can be divided into two categories: checked and unchecked.

Unchecked Exceptions

java.lang.RuntimeException and java.lang.Error and their subclasses are
categorized as unchecked exceptions. These types of exceptions should not normally occur
during the execution of your application. You can use a try-catch statement to help
discover the source of these exceptions. However, when an application is ready for
production use, there should be a little code remaining that deals with RuntimeException
and its subclasses. The Error subclasses represent errors that are beyond your ability to
correct, such as the JVM running out of memory. Common RuntimeExceptions that you
may have to troubleshoot include:

• ArrayIndexOutOfBoundsException: Accessing an array element that does not
exist

• NullPointerException: Using a reference that does not point to an object

• ArithmeticException: Dividing by zero

Java SE 8 Programming 11 - 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Handling Exceptions

You should always catch the most specific type of exception.
Multiple catch blocks can be associated with a single try.

try {

System.out.println("About to open a file");

InputStream in = new FileInputStream("missingfile.txt");

System.out.println("File open");

int data = in.read();

in.close();

} catch (FileNotFoundException e) {

System.out.println(e.getClass().getName());

System.out.println("Quitting");

} catch (IOException e) {

System.out.println(e.getClass().getName());

System.out.println("Quitting");

}

Order is important. You must
catch the most specific

exceptions first (that is, child
classes before parent

classes).

Checked Exceptions

Every class that is a subclass of Exception except RuntimeException and its subclasses
falls into the category of checked exceptions. You must “handle or declare” these exceptions
with a try or throws statement. The HTML documentation for the Java API (Javadoc) will
describe which checked exceptions can be generated by a method or constructor and why.

Catching the most specific type of exception enables you to write catch blocks that are
targeted at handling very specific types of errors. You should avoid catching the base type of
Exception, because it is difficult to create a general purpose catch block that can deal with
every possible error.

Note: Exceptions thrown by the Java Persistence API (JPA) extend RuntimeException,
and as such they are categorized as unchecked exceptions. These exceptions may need to
be “handled or declared” in production-ready code, even though you are not required to do so
by the compiler.

Java SE 8 Programming 11 - 8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

finally Clause

InputStream in = null;

try {

System.out.println("About to open a file");

in = new FileInputStream("missingfile.txt");

System.out.println("File open");

int data = in.read();

} catch (IOException e) {

System.out.println(e.getMessage());

} finally {

try {

if(in != null) in.close();

} catch(IOException e) {

System.out.println("Failed to close file");

}

}

You always want to
close open resources.

A finally clause runs regardless of whether
or not an Exception was generated.

Closing Resources

When you open resources, such as files or database connections, you should always close
them when they are no longer needed. Attempting to close resources inside the try block
can be problematic because you can end up skipping the close operation. A finally block
always runs regardless of whether or not an error occurred during the execution of the try
block. If control jumps to a catch block, the finally block executes after the catch block.

Sometimes the operation that you want to perform in your finally block may itself cause an
Exception to be generated. In that case, you may be required to nest a try-catch inside
of a finally block. You may also nest a try-catch inside of try and catch blocks.

Java SE 8 Programming 11 - 9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

try-with-resources Statement

• The try-with-resources statement is a try statement that
declares one or more resources.

• Any class that implements java.lang.AutoCloseable
can be used as a resource.

System.out.println("About to open a file");
try (InputStream in =

new FileInputStream("missingfile.txt")) {
System.out.println("File open");
int data = in.read();

} catch (FileNotFoundException e) {
System.out.println(e.getMessage());

} catch (IOException e) {
System.out.println(e.getMessage());

}

Closeable Resources

The try-with-resources statement can eliminate the need for a lengthy finally block.
Resources opened by using the try-with-resources statement are always closed. If a
resource should be autoclosed, its reference must be declared within the try statement’s
parenthesis.

Multiple resources can be opened if they are separated by semicolons. If you open multiple
resources, they should be closed in the opposite order in which you opened them.

Java SE 8 Programming 11 - 10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Catching Multiple Exceptions

Using the multi-catch clause, a single catch block can handle
more than one type of exception.
ShoppingCart cart = null;

try (InputStream is = new FileInputStream(cartFile);

ObjectInputStream in = new ObjectInputStream(is)) {

cart = (ShoppingCart)in.readObject();

} catch (ClassNotFoundException | IOException e) {

System.out.println("Exception deserializing " + cartFile);

System.out.println(e);

System.exit(-1);

} Multiple exception types
are separated with a

vertical bar.

The Benefits of Multi-catch

Sometimes you want to perform the same action regardless of the exception being generated.
The new multi-catch clause reduces the amount of code you must write by eliminating the
need for multiple catch clauses with the same behaviors.

Another benefit of the multi-catch clause is that it makes it less likely that you will attempt to
catch a generic exception. Catching Exception prevents you from noticing other types of
exceptions that might be generated by code that you add later to a try block.

The type alternatives that are separated with vertical bars cannot have an inheritance
relationship. You may not list both FileNotFoundException and IOException in a
multi-catch clause.

File I/O and object serialization are covered in the lesson titled “Java I/O Fundamentals.”

Java SE 8 Programming 11 - 11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Declaring Exceptions

You may declare that a method throws an exception instead of
handling it.

public static int readByteFromFile() throws IOException {

try (InputStream in = new FileInputStream("a.txt")) {

System.out.println("File open");

return in.read();

}

}

Notice the lack of catch
clauses. The try-with-
resources statement is

being used only to close
resources.

Using the throws clause, a method may declare that it throws one or more exceptions during
execution.

If an exception is generated while executing the method, the method stops executing and the
exception is thrown to the caller.

Overridden methods may declare the same exceptions, fewer exceptions, or more specific
exceptions, but not additional or more generic exceptions.

A method may declare multiple exceptions with a comma-separated list.

public static int readByteFromFile() throws FileNotFoundException,
IOException {

try (InputStream in = new FileInputStream("a.txt")) {

System.out.println("File open");

return in.read();

}

}

Technically, you do not need to declare FileNotFoundException because it is a subclass
of IOException, but it is a good practice to do so.

Java SE 8 Programming 11 - 12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Handling Declared Exceptions

The exceptions that methods may throw must still be handled.
Declaring an exception just makes it someone else’s job to
handle them.

public static void main(String[] args) {

try {

int data = readByteFromFile();

} catch (IOException e) {

System.out.println(e.getMessage());

}

}

Method that declared
an exception

Handling Exceptions

Your application should always handle its exceptions. Adding a throws clause to a method
only delays the handling of the exception. In fact, an exception can be thrown repeatedly up
the call stack. A standard Java SE application must handle any exceptions before they are
thrown out of the main method; otherwise, you risk having your program terminate
abnormally. It is possible to declare that main throws an exception, but unless you are
designing programs to terminate in a nongraceful fashion, you should avoid doing so.

Java SE 8 Programming 11 - 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Throwing Exceptions

The throw statement is used to throw an instance of
exception.

1 import java.io.FileNotFoundException;
2 class DemoThrowsException {
3 public void readFile(String file) throws
4 FileNotFoundException {
5 boolean found = findFile(file);
6 if (!found)
7 throw new FileNotFoundException("Missing file");
8 else {
9 //code to read file
10 }
11 }
12 boolean findFile(String file) {
13 //code to return true if file can be located
14 } }

The code snippet in the slide demonstrates creating a method that throws a checked
exception

Line 3: The throws statement indicates that this method can
throw FileNotFoundException.
Line 7: If the file cannot be found, the code creates and throws an object
of FileNotFoundException by using the throw statement.

A method chooses to throw an exception as opposed to handling it itself. It is a contract
between the calling method and the called method.

In this example, the method readFile does not handle FileNotFoundException itself
because its responsibilities do not include how to locate a file.

Java SE 8 Programming 11 - 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Custom Exceptions

You can create custom exception classes by extending
Exception or one of its subclasses.

class InvalidPasswordException extends Exception {

InvalidPasswordException() {

}

InvalidPasswordException(String message) {

super(message);

}

InvalidPasswordException(String message, Throwable cause) {

super(message, cause);

}

}

Custom exceptions are never thrown by standard Java class libraries. To take advantage of a
custom exception class, you must throw it yourself. For example:
throw new InvalidPasswordException();

A custom exception class may override methods or add new functionality. The rules of
inheritance are the same, even though the parent class type is an exception.

Because exceptions capture information about a problem that has occurred, you may need to
add fields and methods depending on the type of information that needs to be captured. If a
string can capture all the necessary information, you can use the getMessage() method
that all Exception classes inherit from Throwable. Any Exception constructor that
receives a string will store it to be returned by getMessage().

Java SE 8 Programming 11 - 15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Assertions

• Use assertions to document and verify the assumptions
and internal logic of a single method:
– Internal invariants

– Control flow invariants

– Class invariants

• Inappropriate uses of assertions
– Do not use assertions to check the parameters of a public

method.

– Do not use methods that can cause side effects in the
assertion check.

Why Use Assertions

You can use assertions to add code to your applications, which would ensure that the
application is executing as expected. Using assertions, you test for various conditions failing;
if they do, you terminate the application and display debugging-related information. Assertions
should not be used if the checks to be performed should always be executed because
assertion checking may be disabled.

Java SE 8 Programming 11 - 16

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Assertion Syntax

There are two forms of the assert statement:

• assert booleanExpression;

– This statement tests the boolean expression.
– It does nothing if the boolean expression evaluates to true.

– If the boolean expression evaluates to false, this statement
throws an AssertionError.

• assert booleanExpression : expression;
– This form acts just like assert booleanExpression;.

– In addition, if the boolean expression evaluates to false,
the second argument is converted to a string and is used as
descriptive text in the AssertionError message.

The assert Statement

AssertionError is a subclass of Error and, therefore, falls in the category of unchecked
exceptions.

Java SE 8 Programming 11 - 17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Internal Invariants
public class Invariant {

static void checkNum(int num) {

int x = num;

if (x > 0) {

System.out.print("number is positive" + x);

} else if (x == 0) {

System.out.print("number is zero" + x);

} else {

assert (x > 0);

}

}

public static void main(String args[]) {

checkNum(-4);

}

}

Internal Invariant

An invariant is something that should always be true. An internal invariant is a “fact” that you
believe to be true at a certain point in the program.

In the code snippet in the slide, the assert statement determines whether the number is less
than zero and, if so, it throws an AssertionError.

Java SE 8 Programming 11 - 18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Control Flow Invariants

1 switch (suit) {

2 case Suit.CLUBS: // ...

3 break;

4 case Suit.DIAMONDS: // ...

5 break;

6 case Suit.HEARTS: // ...

7 break;

8 case Suit.SPADES: // ...

9 break;

10 default:

11 assert false : "Unknown playing card suit";

12 break;

13 }

Control Flow Invariant

Java SE 8 Programming 11 - 19

Assertion can be used in a switch statement with no default case, when the programmer
is sure that one of the switch cases will be executed every time he or she can omit the
default case as in the example in the slide.

To test this assumption, the programmer can add an assert statement in the default
case. By using the assert statement, you can check the assumption about the applications
flow of control. Assertion can be placed at any location where the control will not be reached.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Class Invariants

public class PersonClassInvariant {

String name;

String ssn;

int age;

private void checkAge()

{

assert age >= 18 && age < 150;

}

public void changeName(String fname)

{

checkAge();

name=fname;

}

}

Class Invariant

A class invariant is one that an object must satisfy in order to be a valid member of a class.

Java SE 8 Programming 11 - 20

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Controlling Runtime Evaluation of Assertions

• If assertion checking is disabled, the code runs as fast as it
would if the check were not there.

• Assertion checks are disabled by default. Enable
assertions with either of the following commands:
java -enableassertions MyProgram

java -ea MyProgram

• Assertion checking can be controlled on class, package,
and package hierarchy basis. See:
http://download.oracle.com/javase/7/docs/technotes/guide
s/language/assert.html

Enabling Assertions in Netbeans

1. In Netbeans, right-click the project and select Properties.

2. In the window that appears, select Run.

3. Enter -enableassertions in VM Options.

Java SE 8 Programming 11 - 21

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Summary

In this lesson, you should have learned how to:

• Define the purpose of Java exceptions
• Use the try and throw statements

• Use the catch, multi-catch, and finally clauses

• Autoclose resources with a try-with-resources statement

• Recognize common exception classes and categories

• Create custom exceptions and auto-closeable resources

• Test invariants by using assertions

Java SE 8 Programming 11 - 22

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practice 11-1 Overview: Catching Exceptions

This practice covers the following topics:
• Adding try-catch statements to a class

• Handling exceptions

In this practice, you write code to deal with both checked and unchecked exceptions.

Java SE 8 Programming 11 - 23

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practice 11-2 Overview: Extending Exception
and Using throw and throws

This practice covers the following topics:
• Extending the Exception class

• Throwing exceptions using throw and throws

Java SE 8 Programming 11 - 24

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

A NullPointerException must be caught by using a
try-catch statement.

a. True

b. False

Java SE 8 Programming 11 - 25

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Which of the following types are all checked exceptions
(instanceof)?

a. Error

b. Throwable

c. RuntimeException

d. Exception

Java SE 8 Programming 11 - 26

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Which keyword would you use to add a clause to a method
stating that the method might produce an exception?
a. throw

b. thrown

c. throws

d. assert

Java SE 8 Programming 11 - 27

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Assertions should be used to perform user-input validation.

a. True

b. False

Java SE 8 Programming 11 - 28

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Java Date/Time API

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Objectives

After completing this lesson, you should be able to:

• Create and manage date-based events

• Create and manage time-based events

• Combine date and time into a single object

• Work with dates and times across time zones

• Manage changes resulting from daylight savings

• Define and create timestamps, periods, and durations

• Apply formatting to local and zoned dates and times

Java SE 8 Programming 12 - 2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Why Is Date and Time Important?

In the development of applications, programmers often need to
represent time and use it to perform calculations:

• The current date and time (locally)

• A date and/or time in the future or past

• The difference between two dates/time in seconds,
minutes, hours, days, months, years

• The time or date in another country (time zone)

• The correct time after daylight savings time is applied

• The number of days in the month of February (leap years)

• A time duration (hours, mins, secs) or a period (years,
months, days)

• Current time and date are used to calculate events in the future, and as timestamps.

• Calculating a time or date offset is important when determining what the time and date
are when n hours or n days are added to a date.

• Determining time and date in other countries is often a critical factor in determining when
meetings happen, or what the local time is when a plane lands.

• Leap years are incredibly tricky to manage.

Java SE 8 Programming 12 - 3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Previous Java Date and Time

Disadvantages of java.util.Date (Calendar, TimeZone &
DateFormat):

• Does not support fluent API approach

• Instances are mutable – not compatible with lambda

• Not thread-safe

• Weakly typed calendars

• One size fits all

The java.time API is a major evolution of the previous APIs that supported the java.util
API's Date, Calendar, TimeZone, and DateFormat.

Java SE 8 Programming 12 - 4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Java Date and Time API: Goals

• The classes and methods should be straightforward.

• The API should support a fluent API approach.

• Instances of time/date objects should be immutable. (This
is important for lambda operations.)

• Use ISO standards to define date and time.

• Time and date operations should be thread-safe.

• The API should support strong typing, which makes it
much easier to develop good code first. (The compiler is
your friend!)

• toString will always return a human-readable format.

• Allow developers to extend the API easily.

The ISO Calendar is also known as the Gregorian calendar in JDK code. The ISO calendar
system applies the current rules for leap years both forward and backward in time.

Java SE 8 Programming 12 - 5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Working with Local Date and Time

The java.time API defines two classes for working with local
dates and times (without a time zone):
• LocalDate:

– Does not include time

– A year-month-day representation
– toString – ISO 8601 format (YYYY-MM-DD)

• LocalTime:

– Does not include date

– Stores hours:minutes:seconds.nanoseconds
– toString – (HH:mm:ss.SSSS)

ISO-8601 defines the international format of dates as the year first, followed by the month,
day, hour, minutes, and seconds. The definition is based on the relative importance of each
unit of time.

Java SE 8 Programming 12 - 6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Working with LocalDate

LocalDate is a class that holds an event date: a birth date,
anniversary, meeting date, and so on.

• A date is a label for a day.
• LocalDate uses the ISO calendar by default.

• LocalDate does not include time, so it is portable across
time zones.

• You can answer the following questions about dates with
LocalDate:

– Is it in the future or past?

– Is it in a leap year?

– What day of the week is it?

– What is the day a month from now?

– What is the date next Tuesday?

java.util.Date includes a time, and developers would often use midnight to represent just
a date. But some time zones do not have a midnight depending upon where they are in day
light savings time.

Java SE 8 Programming 12 - 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

LocalDate: Example

import java.time.LocalDate;
import static java.time.temporal.TemporalAdjusters.*;
import static java.time.DayOfWeek.*;
import static java.lang.System.out;

public class LocalDateExample {

public static void main(String[] args) {
LocalDate now, bDate, nowPlusMonth, nextTues;
now = LocalDate.now();
out.println("Now: " + now);
bDate = LocalDate.of(1995, 5, 23); // Java's Birthday
out.println("Java's Bday: " + bDate);
out.println("Is Java's Bday in the past? " + bDate.isBefore(now));
out.println("Is Java's Bday in a leap year? " + bDate.isLeapYear());
out.println("Java's Bday day of the week: " + bDate.getDayOfWeek());
nowPlusMonth = now.plusMonths(1);
out.println("The date a month from now: " + nowPlusMonth);
nextTues = now.with(next(TUESDAY));
out.println("Next Tuesday's date: " + nextTues);

}
}

LocalDate objects are
immutable – methods
return a new instance.

next method

TUESDAY

• TemporalAdjusters is a final class of static utility methods used to modify temporal
objects (such as LocalDate).

• DayOfWeek is an enum of days of the week, that is, FRIDAY, TUESDAY

• Sample output:
Now: 2014-02-14

Java's Bday: 1995-05-23

Is Java's Bday in the past? true

Is Java's Bday in a leap year? false

Java's Bday day of the week: TUESDAY

The date a month from now: 2014-03-14

Next Tuesday's date: 2014-02-18

Java SE 8 Programming 12 - 8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Working with LocalTime

LocalTime stores the time within a day.

• Measured from midnight

• Based on a 24-hour clock (13:30 is 1:30 PM.)
• Questions you can answer about time with LocalTime

– When is my lunch time?

– Is lunch time in the future or past?

– What is the time 1 hour 15 minutes from now?

– How many minutes until lunch time?

– How many hours until bedtime?

– How do I keep track of just the hours and minutes?

Java SE 8 Programming 12 - 9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

LocalTime: Example

import java.time.LocalTime;
import static java.time.temporal.ChronoUnit.*;
import static java.lang.System.out;

public class LocalTimeExample {
public static void main(String[] args) {

LocalTime now, nowPlus, nowHrsMins, lunch, bedtime;
now = LocalTime.now();
out.println("The time now is: " + now);
nowPlus = now.plusHours(1).plusMinutes(15);
out.println("What time is it 1 hour 15 minutes from now? " + nowPlus);
nowHrsMins = now.truncatedTo(MINUTES);
out.println("Truncate the current time to minutes: " + nowHrsMins);
out.println("It is the " + now.toSecondOfDay()/60 + "th minute");
lunch = LocalTime.of(12, 30);
out.println("Is lunch in my future? " + lunch.isAfter(now));
long minsToLunch = now.until(lunch, MINUTES);
out.println("Minutes til lunch: " + minsToLunch);
bedtime = LocalTime.of(21, 0);
long hrsToBedtime = now.until(bedtime, HOURS);
out.println("How many hours until bedtime? " + hrsToBedtime);

}
}

HOURS, MINUTES

ChronoUnit is an enum that holds time units, including HALF_DAYS, HOURS, YEARS, and
WEEKS.

Sample output:
The time now is: 11:21:26.302

What time is it 1 hour 15 minutes from now? 12:36:26.302

Truncate the current time to minutes: 11:21

It is the 681th minute

Is lunch in my future? true

Minutes till lunch: 68

How many hours until bedtime? 9

Java SE 8 Programming 12 - 10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Working with LocalDateTime

LocalDateTime is a combination of LocalDate and
LocalTime.

• LocalDateTime is useful for narrowing events.

• You can answer the following questions with
LocalDateTime:

– When is the meeting with corporate?

– When does my flight leave?

– When does the course start?

– If I move the meeting to Friday, what is the date?

– If the course starts at 9 AM on Monday and ends at 5 PM on
Friday, how many hours am I in class?

Java SE 8 Programming 12 - 11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

LocalTimeDate: Example

import java.time.*;
import static java.time.Month.*;
import static java.time.temporal.ChronoUnit.*;
import static java.lang.System.out;

public class LocalDateTimeExample {
public static void main(String[] args) {

LocalDateTime meeting, flight, courseStart, courseEnd;
meeting = LocalDateTime.of(2014, MARCH, 21, 13, 30);
out.println("Meeting is on: " + meeting);
LocalDate flightDate = LocalDate.of(2014, MARCH, 31);
LocalTime flightTime = LocalTime.of(21, 45);
flight = LocalDateTime.of(flightDate, flightTime);
out.println("Flight leaves: " + flight);
courseStart = LocalDateTime.of(2014, MARCH, 24, 9, 00);
courseEnd = courseStart.plusDays(4).plusHours(8);
out.println("Course starts: " + courseStart);
out.println("Course ends: " + courseEnd);
long courseHrs = (courseEnd.getHour() - courseStart.getHour()) *

(courseStart.until(courseEnd, DAYS) + 1);
out.println("Course is: " + courseHrs + " hours long.");

}
}

LocalDateTime,
LocalDate, LocalTime

Combine LocalDate
and LocalTime

objects.

MARCH

Sample output:
Meeting is on: 2014-03-21T13:30

Flight leaves: 2014-03-31T21:45

Course starts: 2014-03-24T09:00

Course ends: 2014-03-28T17:00

Course is: 40 hours long.

Java SE 8 Programming 12 - 12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Working with Time Zones

Time zones are geographic, but the time in a specific location is
defined by the government in that location.

• When a country (and sometimes a state) observes
changes (for daylight savings) varies.

www.time.gov

• Time zones are relative to the Coordinated Universal Time (UTC).

• Time rules are based on the offset from UTC:

- New York is UTC – 5 hours during standard time.

- New York is UTC – 4 hours during daylight savings.

• Daylight savings can change from year to year, and sometimes even in a single year.

- USA DST started: 3/14/2010, 3/13/2011, 3/12/2012, 3/10/2013, 3/9/2014, and so
on

- Arizona does not recognize DST.

- Egypt had two DST periods in 2010, and no DST changes since 2011.

Java SE 8 Programming 12 - 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Daylight Savings Time Rules

Time changes result in a local hour gap/overlap:

Sunday, March 9, 2014
(New York)

Local time UTC Offset

1:59:58 AM UTC-5h EST

1:59:59 AM UTC-5h EST

2:00:00 -> 3:00:00 UTC-4h EDT

3:00:01 AM UTC-4h EDT

Starting DST causes a
one hour gap.

Sunday, November 2,
2014 (New York)

Local time UTC Offset

1:59:58 AM UTC-4h EST

1:59:59 AM UTC-4h EST

2:00:00 -> 1:00:00 UTC-5h EDT

1:00:01 AM UTC-5h EDT

Ending DST causes a
one hour overlap.

Greenwich Mean Time (GMT) was previously used as the world standard time based on the
average day observed at the Greenwich Observatory (in the suburbs of London).

Note that some time changes occur at midnight, which means that you cannot use midnight in
a date, because some countries do not have a midnight during changes to DST.

Java SE 8 Programming 12 - 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Modeling Time Zones

• ZoneId: Is a specific location or offset relative to UTC

ZoneId nyTZ = ZoneId.of("America/New_York");

ZoneId EST = ZoneId.of("US/Eastern");

ZoneId Romeo = ZoneId.of("Europe/London");

• ZoneOffset: Extends ZoneId; specifies the actual time
difference from UTC

ZoneOffset USEast = ZoneOffset.of("-5");

ZoneOffset Nepal = ZoneOffset.ofHoursMinutes(5, 45);

ZoneId EST = ZoneId.ofOffset("UTC", USEast);

• ZoneRules: Is the class used to determine offsets

The relationship between these objects is that a ZoneId is a specific time zone that falls
within a ZoneOffset. ZoneRules are used with a ZoneId to determine changes in the
ZoneOffset based on the specific date and daylight savings time changes.

Java SE 8 Programming 12 - 15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Creating ZonedDateTime Objects

• Stores LocalDateTime, ZoneId, and ZoneOffset

ZoneId USEast = ZoneId.of("America/New_York");

LocalDate date = LocalDate.of(2014, MARCH, 23);

LocalTime time = LocalTime.of(9, 30);

LocalDateTime dateTime = LocalDateTime.of(date, time);

ZonedDateTime courseStart = ZonedDateTime.of(date, time, USEast);

ZonedDateTime hereNow = ZonedDateTime.now(USEast).truncatedTo(MINUTES);

System.out.println("Here now: " + hereNow);

System.out.println("Course start: " + courseStart);

ZonedDateTime newCourseStart = courseStart.plusDays(2).minusMinutes(30);

System.out.println("New Course Start: " + newCourseStart);

Here now: 2014-02-19 T 17:00 -05:00[America/New_York]

Course start: 2014-03-23 T 09:30 -04:00[America/New_York]

New Course Start: 2014-03-25 T 09:00 -04:00[America/New_York]

Space added to make the
fields more clear

Java SE 8 Programming 12 - 16

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Working with ZonedDateTime Gaps/Overlaps

Given a meeting date the day before daylight savings (2AM on
March 9th), what happens if the meeting is moved out by a day?

// DST Begins March 9th, 2014

LocalDate meetDate = LocalDate.of(2014, MARCH, 8);

LocalTime meetTime = LocalTime.of(16, 00);

ZonedDateTime meeting = ZonedDateTime.of(meetDate, meetTime, USEast);

System.out.println("meeting time: " + meeting);

ZonedDateTime newMeeting = meeting.plusDays(1);

System.out.println("new meeting time: " + newMeeting

meeting time: 2014-03-08 16:00 -05:00[America/New_York]

new meeting time: 2014-03-09 16:00 -04:00[America/New_York]

• The local time is not changed, and the offset is managed
correctly.

Likewise, the overlaps are also handled in the same way:

// DST Ends November 2nd, 2014

meetDate = LocalDate.of(2104, NOVEMBER, 1);

meeting = ZonedDateTime.of(meetDate, meetTime, USEast);

System.out.println("meeting time: " + meeting);

newMeeting = meeting.plusDays(1);

System.out.println("new meeting time: " + newMeeting);

Java SE 8 Programming 12 - 17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

ZoneRules

• Each time zone (ZoneId) has a set of rules that are part of
the JDK.

• Date or times that land on time changes can be
determined by using the rules.

// Ask the rules if there was a gap or overlap

ZoneId USEast = ZoneId.of("America/New_York");

LocalDateTime lateNight = LocalDateTime.of(2014, MARCH, 9, 2, 30);

ZoneOffsetTransition zot = USEast.getRules().getTransition(lateNight);

if (zot != null) {

if (zot.isGap()) System.out.println("gap");

if (zot.isOverlap()) System.out.println("overlap");

}

• Given the code above, what will print?

From Javadocs: “The Java virtual machine has a default provider that provides zone rules for
the time-zones defined by IANA Time Zone Database (TZDB). If the system property
java.time.zone.DefaultZoneRulesProvider is defined, then it is taken to be the
fully-qualified name of a concrete ZoneRulesProvider class to be loaded as the default
provider, using the system class loader. If this system property is not defined, a system-
default provider will be loaded to serve as the default provider."

Note: In the JDK, the default provider is a class, TzdbZoneRulesProvider. This class
reads the time zone database located in the jdk1.8.0/jre/lib/tzdb.dat file.

Java SE 8 Programming 12 - 18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Working Across Time Zones

The OffsetDateTime class stores a LocalDateTime and
ZoneOffset.

• This is useful for determining ZonedDateTimes across
time zones.

LocalDateTime meeting = LocalDateTime.of(2014, JUNE, 13, 12, 30);

ZoneId SanFran = ZoneId.of("America/Los_Angeles");

ZonedDateTime staffCall = ZonedDateTime.of(meeting, SanFran);

OffsetDateTime = staffCall.toOffsetDateTime();

• The offset is used to calculate date/time using zone rules:

ZoneId London = ZoneId.of("Europe/London");

OffsetDateTime staffCallOffset = staffCall.toOffsetDateTime();

ZonedDateTime staffCallUK = staffCallOffset.atZoneSameInstant(London);

System.out.println("Staff call (Pacific) is at: " + staffCall);

System.out.println("Staff call (UK) is at: " + staffCallLondon);

The easiest way to get an OffsetDateTime is from a ZonedDateTime by using the
toOffsetDateTime method.

Output:

Staff call (Pacific) is at: 2014-06-13T12:30-07:00[America/Los_Angeles]

Staff call (UK) is at: 2014-06-13T20:30+01:00[Europe/London]

Java SE 8 Programming 12 - 19

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Date and Time Methods

Prefix Example Use
now today = LocalDate.now() Creates an instance using the system

clock

of meet = LocalTime.of(13, 30) Creates an instance by using the
parameters passed

get today.get(DAY_OF_WEEK) Returns part of the state of the target

with meet.withHour(12) Returns a copy of the target object
with one element changed

plus, minus nextWeek.plusDays(7)
sooner.minusMinutes(30)

Returns a copy of the object with the
amount added or subtracted

to meet.toSecondOfDay() Converts this object to another type.
Here returns int seconds.

at today.atTime(13, 30) Combines this object with another;
returns a LocalDateTime object

until today.until Calculates the amount of time until
another date in terms of the unit

isBefore,
isAfter

today.isBefore(lastWeek) Compares this object with another on
the timeline

isLeapYear today.isLeapYear() Checks if this object is a leap year

The list shown in the slide is not a complete list of the methods supported.

Java SE 8 Programming 12 - 20

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Date and Time Amounts

• Instant – Stores an instant in time on the time-line

– Useful for: timestamps, e.g. login events
– Stored as seconds (long) and nanoseconds (int)

– Methods used to compare before and after

Instant now = Instant.now();

Thread.sleep(0,1); // long milliseconds, int nanoseconds

Instant later = Instant.now();

System.out.println("now is before later? " + now.isBefore(later));

System.out.println("Now: " + now);

System.out.println("Later: " + later);

now is before later? true

Now: 2014-02-21 T 16:11:34.788 Z

Later: 2014-02-21 T 16:11:34.789 Z

toString includes
nanoseconds to three digits

Instants are stored in a long using positive values for dates after the EPOCH, 1970-01-
01T00:00:00Z, and negative values before. Instants are always recorded using UTC. Instant
is the closest equivalent to java.util.Date.

An instant relies on the Java Time-Scale to maintain accuracy. See javadoc for the complete
details.

Nanosecond values are stored in a range between 0 and 999,999,999.

Java SE 8 Programming 12 - 21

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Period

Period is a class that holds a date-based amount.

• Years, months, and days based on the ISO-8601 calendar

• Plus and minus work with a conceptual day, thus
preserving daylight savings changes

Period oneDay = Period.ofDays(1);

System.out.println("Period of one day: " + oneDay);

LocalDateTime beforeDST = LocalDateTime.of(2014, MARCH, 8, 12, 00);

ZonedDateTime newYorkTime =

ZonedDateTime.of(beforeDST, ZoneId.of("America/New_York"));

System.out.println("Before: " + newYorkTime);

System.out.println("After: " + newYorkTime.plus(oneDayYear));

Period of one day: P1D

Before: 2014-03-08 T 12:00 -05:00[America/New_York]

After: 2014-03-09 T 12:00 -04:00[America/New_York]

The time is preserved, because
only "days" are added.

Java SE 8 Programming 12 - 22

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Duration

Duration is a class that stores a time-based amount.

• Time is measured in actual seconds and nanoseconds.

• Days are treated as 24 hours, and daylight savings is
ignored.

Duration one24hourDay = Duration.ofDays(1);

System.out.println("Duration of one day: " + one24hourDay);

beforeDST = LocalDateTime.of(2014, MARCH, 8, 12, 00);

newYorkTime = ZonedDateTime.of(beforeDST, ZoneId.of("America/New_York"));

System.out.println("Before: " + newYorkTime);

System.out.println("After: " + newYorkTime.plus(one24hourDay));

Duration of one day: PT24H

Before: 2014-03-08 T 12:00 -05:00[America/New_York]

After: 2014-03-09 T 13:00 -04:00[America/New_York]

The time is not preserved because
24 hours are added.

Java SE 8 Programming 12 - 23

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Calculating Between Days

TemporalUnit is an interface representing a unit of time.

• Implemented by the enum class ChronoUnit

import static java.time.temporal.ChronoUnit.*;

LocalDate christmas = LocalDate.of(2014, DECEMBER, 25);

LocalDate today = LocalDate.now();

long days = DAYS.between(today, christmas);

System.out.println("There are " + days + " shopping days til Christmas");

• Period also provides a between method

Period tilXMas = Period.between(today, christmas);

System.out.println("There are " + tilXMas.getMonths() +

" months and " + tilXMas.getDays() +

" days til Christmas");

Output:

There are 307 shopping days til Christmas

There are 10 months and 4 days til Christmas

Java SE 8 Programming 12 - 24

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Making Dates Pretty

DateTimeFormatter produces formatted date/times

• Using predefined constants, patterns letters, or a localized
style

ZonedDateTime now = ZonedDateTime.now();

DateTimeFormatter formatter = DateTimeFormatter.ISO_LOCAL_DATE;

System.out.println(now.format(formatter));

formatter = DateTimeFormatter.ISO_ORDINAL_DATE;

System.out.println(now.format(formatter));

formatter = DateTimeFormatter.ofPattern("EEEE, MMMM dd, yyyy G, hh:mm a VV");

System.out.println(now.format(formatter));

formatter = DateTimeFormatter.ofLocalizedDateTime(FormatStyle.MEDIUM);

System.out.println(now.format(formatter));

2014-02-21

2014-052-05:00

Friday, February 21, 2014 AD, 03:51 PM America/New_York

Feb 21, 2014 3:51:51 PM

Year and day of the year

FormatStyle.MEDIUM

Predefined
DateTimeFormatter

constants

String pattern

Format style

Use four characters for the full representation of a field – for example, E represents the day of
the week. One E is used for Tue and four (EEEE) represent Tuesday.

FormatStyle is an enum with SHORT, MEDIUM, LONG, and FULL.

Java SE 8 Programming 12 - 25

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Using Fluent Notation

One of the goals of JSR-310 was to make the API fluent.
• Examples:
// Not very readable - is this June 11 or November 6th?

LocalDate myBday = LocalDate.of(1970, 6, 11);

// A fluent approach

myBday = Year.of(1970).atMonth(JUNE).atDay(11);

// Schedule a meeting fluently

LocalDateTime meeting = LocalDate.of(2014, MARCH, 25).atTime(12, 30);

// Schedule that meeting using the London timezone

ZonedDateTime meetingUK = meeting.atZone(ZoneId.of("Europe/London"));

// What time is it in San Francisco for that meeting?

ZonedDateTime earlyMeeting =

meetingUK.withZoneSameInstant(ZoneId.of("America/Los_Angeles"));

Java SE 8 Programming 12 - 26

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Summary

In this lesson, you should have learned how to:

• Create and manage date-based events

• Create and manage time-based events

• Combine date and time into a single object

• Work with dates and times across time zones

• Manage changes resulting from daylight savings

• Define and create timestamps, periods and durations

• Apply formatting to local and zoned dates and times

Java SE 8 Programming 12 - 27

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practices

• Practice 12-1: Working with Local Dates and Times

• Practice 12-2: Working with Dates and Times Across Time
Zones

• Practice 12-3: Formatting Dates

Java SE 8 Programming 12 - 28

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Java I/O Fundamentals

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Objectives

After completing this lesson, you should be able to:

• Describe the basics of input and output in Java

• Read data from and write data to the console

• Use I/O streams to read and write files

• Read and write objects by using serialization

Java SE 8 Programming 13 - 2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Java I/O Basics

The Java programming language provides a comprehensive
set of libraries to perform input/output (I/O) functions.

• Java defines an I/O channel as a stream.

• An I/O stream represents an input source or an output
destination.

• An I/O stream can represent many different kinds of
sources and destinations, including disk files, devices,
other programs, and memory arrays.

• I/O streams support many different kinds of data, including
simple bytes, primitive data types, localized characters,
and objects.

Some I/O streams simply pass on data; others manipulate and transform the data in useful
ways.

Java SE 8 Programming 13 - 3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

I/O Streams

• A program uses an input stream to read data from a
source, one item at a time.

• A program uses an output stream to write data to a
destination (sink), one item at time.

No matter how they work internally, all streams present the same simple model to programs
that use them. A stream is a sequential flow of data. A stream can come from a source or can
be generated to a sink.

• A source stream initiates the flow of data, also called an input stream.

• A sink stream terminates the flow of data, also called an output stream.

Sources and sinks are both node streams. Types of node streams are files, memory, and
pipes between threads or processes.

Java SE 8 Programming 13 - 4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

I/O Application

Typically, a developer uses input and output in three ways:

Files and
directories

Console:
(standard-in,
standard-out)

Socket-based
sources

An application developer typically uses I/O streams to read and write files, to read information
from and write information to some output device, such as the keyboard (standard in) and the
console (standard out). Finally, an application may need to use a socket to communicate with
another application on a remote system.

Java SE 8 Programming 13 - 5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Data Within Streams

• Java technology supports two types of streams: character
and byte.

• Input and output of character data is handled by readers
and writers.

• Input and output of byte data is handled by input streams
and output streams:
– Normally, the term stream refers to a byte stream.

– The terms reader and writer refer to character streams.

Stream Byte Streams Character Streams

Source streams InputStream Reader

Sink streams OutputStream Writer

Java technology supports two types of data in streams: raw bytes and Unicode characters.
Typically, the term stream refers to byte streams and the terms reader and writer refer to
character streams.

More specifically, byte input streams are implemented by subclasses of the InputStream
class and byte output streams are implemented by subclasses of the OutputStream class.
Character input streams are implemented by subclasses of the Reader class and character
output streams are implemented by subclasses of the Writer class.

Byte streams are best applied to reading and writing of raw bytes (such as image files, audio
files, and objects). Specific subclasses provide methods to provide specific support for each
of these stream types.

Character streams are designed for reading characters (such as in files and other
character-based streams).

Java SE 8 Programming 13 - 6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Byte Stream InputStream Methods

• The three basic read methods are:
int read()

int read(byte[] buffer)

int read(byte[] buffer, int offset, int length)

• Other methods include:
void close(); // Close an open stream

int available(); // Number of bytes available

long skip(long n); // Discard n bytes from stream

InputStream Methods

The read() method returns an int, which contains either a byte read from the stream, or a
-1, which indicates the end-of-file condition. The other two read methods read the stream into
a byte array and return the number of bytes read. The two int arguments in the third method
indicate a subrange in the target array that needs to be filled.

Note: For efficiency, always read data in the largest practical block, or use buffered streams.

When you have finished with a stream, close it. If you have a stack of streams, use filter
streams to close the stream at the top of the stack. This operation also closes the lower
streams.

InputStream implements AutoCloseable, which means that if you use an InputStream
(or one of its subclasses) in a try-with-resources block, the stream is automatically closed at
the end of the try.

The available method reports the number of bytes that are immediately available to be
read from the stream. An actual read operation following this call might return more bytes.

The skip method discards the specified number of bytes from the stream.

Java SE 8 Programming 13 - 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Byte Stream OutputStream Methods

• The three basic write methods are:
void write(int c)

void write(byte[] buffer)

void write(byte[] buffer, int offset, int length)

• Other methods include:
void close(); // Automatically closed in try-with-resources

void flush(); // Force a write to the stream

OutputStream Methods

As with input, always try to write data in the largest practical block.

Java SE 8 Programming 13 - 8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Byte Stream: Example
1 import java.io.FileInputStream; import java.io.FileOutputStream;

2 import java.io.FileNotFoundException; import java.io.IOException;

3

4 public class ByteStreamCopyTest {

5 public static void main(String[] args) {

6 byte[] b = new byte[128];

7 // Example use of InputStream methods

8 try (FileInputStream fis = new FileInputStream (args[0]);

9 FileOutputStream fos = new FileOutputStream (args[1])) {

10 System.out.println ("Bytes available: " + fis.available());

11 int count = 0; int read = 0;

12 while ((read = fis.read(b)) != -1) {

13 fos.write(b);

14 count += read;

15 }

16 System.out.println ("Wrote: " + count);

17 } catch (FileNotFoundException f) {

18 System.out.println ("File not found: " + f);

19 } catch (IOException e) {

20 System.out.println ("IOException: " + e);

21 }

22 }

23 }

Note that you must keep track of
how many bytes are read into the

byte array each time.

This example copies one file to another by using a byte array. Note that FileInputStream
and FileOutputStream are meant for streams of raw bytes, such as image files.

Note: The available() method, according to Javadocs, reports "an estimate of the number
of remaining bytes that can be read (or skipped over) from this input stream without blocking."

Java SE 8 Programming 13 - 9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Character Stream Reader Methods

• The three basic read methods are:
int read()

int read(char[] cbuf)

int read(char[] cbuf, int offset, int length)

• Other methods include:
void close()

boolean ready()

long skip(long n)

boolean markSupported()

void mark(int readAheadLimit)

void reset()

Reader Methods

The first method returns an int, which contains either a Unicode character read from the
stream, or a -1, which indicates the end-of-file condition. The other two methods read into a
character array and return the number of bytes read. The two int arguments in the third
method indicate a subrange in the target array that needs to be filled.

Java SE 8 Programming 13 - 10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Character Stream Writer Methods

• The basic write methods are:
void write(int c)

void write(char[] cbuf)

void write(char[] cbuf, int offset, int length)

void write(String string)

void write(String string, int offset, int length)

• Other methods include:
void close()

void flush()

Writer Methods

These methods are analogous to the OutputStream methods.

Java SE 8 Programming 13 - 11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Character Stream: Example
1 import java.io.FileReader; import java.io.FileWriter;

2 import java.io.IOException; import java.io.FileNotFoundException;

3

4 public class CharStreamCopyTest {

5 public static void main(String[] args) {

6 char[] c = new char[128];

7 // Example use of InputStream methods

8 try (FileReader fr = new FileReader(args[0]);

9 FileWriter fw = new FileWriter(args[1])) {

10 int count = 0;

11 int read = 0;

12 while ((read = fr.read(c)) != -1) {

13 fw.write(c);

14 count += read;

15 }

16 System.out.println("Wrote: " + count + " characters.");

17 } catch (FileNotFoundException f) {

18 System.out.println("File " + args[0] + " not found.");

19 } catch (IOException e) {

20 System.out.println("IOException: " + e);

21 }

22 }

23 }

Now, rather than a byte array, this
version uses a character array.

Similar to the byte stream example, this example copies one file to another by using a
character array instead of a byte array. FileReader and FileWriter are classes designed
to read and write character streams, such as text files.

Java SE 8 Programming 13 - 12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

I/O Stream Chaining

Input Stream Chain

Output Stream Chain

Data
Source

Program

File Input
Stream

Buffered Input
Stream Data Input

Stream

Data Output
Stream

Buffered Output
Stream

File Output
Stream

Program
Data
Sink

A program rarely uses a single stream object. Instead, it chains a series of streams together
to process the data. The first graphic in the slide demonstrates an example of input stream; in
this case, a file stream is buffered for efficiency and then converted into data (Java primitives)
items. The second graphic demonstrates an example of output stream; in this case, data is
written, then buffered, and finally written to a file.

Java SE 8 Programming 13 - 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Chained Streams: Example

1 import java.io.BufferedReader; import java.io.BufferedWriter;

2 import java.io.FileReader; import java.io.FileWriter;

3 import java.io.FileNotFoundException; import java.io.IOException;

4

5 public class BufferedStreamCopyTest {

6 public static void main(String[] args) {

7 try (BufferedReader bufInput

8 = new BufferedReader(new FileReader(args[0]));

9 BufferedWriter bufOutput

10 = new BufferedWriter(new FileWriter(args[1]))) {

11 String line = "";

12 while ((line = bufInput.readLine()) != null) {

13 bufOutput.write(line);

14 bufOutput.newLine();

15 }

16 } catch (FileNotFoundException f) {

17 System.out.println("File not found: " + f);

18 } catch (IOException e) {

19 System.out.println("Exception: " + e);

20 }

21 }

22}

The character buffer replaced
by a String. Note that

readLine() uses the newline
character as a terminator.

Therefore, you must add that
back to the output file.

A FileReader chained to a
BufferedFileReader: This allows you

to use a method that reads a String.

The slide shows the copy application one more time. This version illustrates the use of a
BufferedReader chained to the BufferedFileReader that you saw before.

The flow of this program is the same as before. Instead of reading a character buffer, this
program reads a line at a time using the line variable to hold the String returned by the
readLine method, which provides greater efficiency. The reason is that each read request
made of a Reader causes a corresponding read request to be made of the underlying
character or byte stream. A BufferedReader reads characters from the stream into a buffer.
(The size of the buffer can be set, but the default value is generally sufficient.)

Java SE 8 Programming 13 - 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Console I/O

The System class in the java.lang package has three static
instance fields: out, in, and err.

• The System.out field is a static instance of a
PrintStream object that enables you to write to standard
output.

• The System.in field is a static instance of an
InputStream object that enables you to read from
standard input.

• The System.err field is a static instance of a
PrintStream object that enables you to write to standard
error.

Console I/O Using System
• System.out is the “standard” output stream. This stream is already open and ready to

accept output data. Typically, this stream corresponds to display output or another
output destination specified by the host environment or user.

• System.in is the “standard” input stream. This stream is already open and ready to
supply input data. Typically, this stream corresponds to keyboard input or another input
source specified by the host environment or user.

• System.err is the “standard” error output stream. This stream is already open and
ready to accept output data.
Typically, this stream corresponds to display output or another output destination
specified by the host environment or user. By convention, this output stream is used to
display error messages or other information that should come to the immediate attention
of a user even if the principal output stream, the value of the variable out, has been
redirected to a file or other destination that is typically not continuously monitored.

Java SE 8 Programming 13 - 15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Writing to Standard Output

• The println and print methods are part of the
java.io.PrintStream class.

• The println methods print the argument and a newline
character (\n).

• The print methods print the argument without a newline
character.

• The print and println methods are overloaded for
most primitive types (boolean, char, int, long, float,
and double) and for char[], Object, and String.

• The print(Object) and println(Object) methods
call the toString method on the argument.

Java SE 8 Programming 13 - 16

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Reading from Standard Input
7 public class KeyboardInput {

8

9 public static void main(String[] args) {

10 String s = "";

11 try (BufferedReader in = new BufferedReader(new
InputStreamReader(System.in))) {

12 System.out.print("Type xyz to exit: ");

13 s = in.readLine();

14 while (s != null) {

15 System.out.println("Read: " + s.trim());

16 if (s.equals("xyz")) {

17 System.exit(0);

18 }

19 System.out.print("Type xyz to exit: ");

20 s = in.readLine();

21 }

22 } catch (IOException e) { // Catch any IO exceptions.

23 System.out.println("Exception: " + e);

24 }

25 }

26 }

Chain a buffered reader to
an input stream that takes

the console input.

The try-with-resources statement on line 6 opens BufferedReader, which is chained to an
InputStreamReader, which is chained to the static standard console input System.in.

If the string read is equal to “xyz,” the program exits. The purpose of the trim() method on
the String returned by in.readLine is to remove any whitespace characters.

Note: A null string is returned if an end of stream is reached (the result of a user pressing
Ctrl + C in Windows, for example), thus the test for null on line 13.

Java SE 8 Programming 13 - 17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Channel I/O

Introduced in JDK 1.4, a channel reads bytes and characters in
blocks, rather than one byte or character at a time.
1 import java.io.FileInputStream; import java.io.FileOutputStream;

2 import java.nio.channels.FileChannel; import java.nio.ByteBuffer;

3 import java.io.FileNotFoundException; import java.io.IOException;

4

5 public class ByteChannelCopyTest {

6 public static void main(String[] args) {

7 try (FileChannel fcIn = new FileInputStream(args[0]).getChannel();

8 FileChannel fcOut = new FileOutputStream(args[1]).getChannel()) {

9 ByteBuffer buff = ByteBuffer.allocate((int) fcIn.size());

10 fcIn.read(buff);

11 buff.position(0);

12 fcOut.write(buff);

13 } catch (FileNotFoundException f) {

14 System.out.println("File not found: " + f);

15 } catch (IOException e) {

16 System.out.println("IOException: " + e);

17 }

18 }

19 }

Create a buffer sized the same as
the file size, and then read and write

the file in a single operation.

In this example, a file can be read in its entirety into a buffer, and then written out in a single
operation.

Channel I/O was introduced in the java.nio package in JDK 1.4.

Java SE 8 Programming 13 - 18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Persistence

Saving data to some type of permanent storage is called
persistence. An object that is persistent-capable can be stored
on disk (or any other storage device), or sent to another
machine to be stored there.

• A non-persisted object exists only as long as the Java
Virtual Machine is running.

• Java serialization is the standard mechanism for saving an
object as a sequence of bytes that can later be rebuilt into
a copy of the object.

• To serialize an object of a specific class, the class must
implement the java.io.Serializable interface.

The java.io.Serializable interface defines no methods, and serves only as a marker to
indicate that the class should be considered for serialization.

Java SE 8 Programming 13 - 19

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Serialization and Object Graphs

• When an object is serialized, only the fields of the object
are preserved.

• When a field references an object, the fields of the
referenced object are also serialized, if that object's class
is also serializable.

• The tree of an object’s fields constitutes the object graph.

A

D

CB

D

Object Graphs

Serialization traverses the object graph and writes that data to the file (or other output stream)
for each node of the graph.

Java SE 8 Programming 13 - 20

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Transient Fields and Objects

• Some object classes are not serializable because they
represent transient operating system–specific information.

• If the object graph contains a non-serializable reference, a
NotSerializableException is thrown and the
serialization operation fails.

• Fields that should not be serialized or that do not need to
be serialized can be marked with the keyword
transient.

A

D

CB

D

Transient

If a field containing an object reference is encountered that is not marked as serializable
(implement java.io.Serializable), a NotSerializableException is thrown and the
entire serialization operation fails. To serialize a graph containing fields that reference objects
that are not serializable, those fields must be marked using the keyword transient.

Java SE 8 Programming 13 - 21

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Transient: Example

public class Portfolio implements Serializable {

public transient FileInputStream inputFile;

public static int BASE = 100;

private transient int totalValue = 10;

protected Stock[] stocks;

}

• The field access modifier has no effect on the data field
being serialized.

• The values stored in static fields are not serialized.

• When an object is deserialized, the values of static fields
are set to the values declared in the class. The value of
non-static transient fields is set to the default value for the
type.

static fields are not
serialized.

Serialization includes all of the
members of the stocks array.

When an object is deserialized, the values of static and transient fields are set to the values
defined in the class declaration. The values of non-static fields are set to the default value of
their type. So in the example shown in the slide, the value of BASE will be 100, per the class
declaration. The value of non-static transient fields, inputFile and totalValue, are set to
their default values, null and 0, respectively.

Java SE 8 Programming 13 - 22

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Serial Version UID

• During serialization, a version number, serialVersionUID, is
used to associate the serialized output with the class used
in the serialization process.

• After deserialization, the serialVersionUID is checked to
verify that the classes loaded are compatible with the
object being deserialized.

• If the receiver of a serialized object has loaded classes for
that object with different serialVersionUID, deserialization
will result in an InvalidClassException.

• A serializable class can declare its own serialVersionUID
by explicitly declaring a field named serialVersionUID
as a static final and of type long:
private static long serialVersionUID = 42L;

Note: The documentation for java.io.Serializable states the following:

“If a serializable class does not explicitly declare a serialVersionUID, then the
serialization run time will calculate a default serialVersionUID value for that class based
on various aspects of the class, as described in the Java(TM) Object Serialization
Specification. However, it is strongly recommended that all serializable classes explicitly
declare serialVersionUID values, since the default serialVersionUID computation is
highly sensitive to class details that may vary depending on compiler implementations,
and can thus result in unexpected InvalidClassExceptions during deserialization.
Therefore, to guarantee a consistent serialVersionUID value across different Java
compiler implementations, a serializable class must declare an explicit serialVersionUID
value. It is also strongly advised that explicit serialVersionUID declarations use the
private modifier where possible, since such declarations apply only to the immediately
declaring class--serialVersionUID fields are not useful as inherited members. Array
classes cannot declare an explicit serialVersionUID, so they always have the default
computed value, but the requirement for matching serialVersionUID values is waived for
array classes.”

Java SE 8 Programming 13 - 23

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Serialization: Example

In this example, a Portfolio is made up of a set of Stocks.

• During serialization, the current price is not serialized, and
is, therefore, marked transient.

• However, the current value of the stock should be set to
the current market price after deserialization.

Java SE 8 Programming 13 - 24

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Writing and Reading an Object Stream
1 public static void main(String[] args) {

2 Stock s1 = new Stock("ORCL", 100, 32.50);

3 Stock s2 = new Stock("APPL", 100, 245);

4 Stock s3 = new Stock("GOOG", 100, 54.67);

5 Portfolio p = new Portfolio(s1, s2, s3);

6 try (FileOutputStream fos = new FileOutputStream(args[0]);

7 ObjectOutputStream out = new ObjectOutputStream(fos)) {

8 out.writeObject(p);

9 } catch (IOException i) {

10 System.out.println("Exception writing out Portfolio: " + i);

11 }

12 try (FileInputStream fis = new FileInputStream(args[0]);

13 ObjectInputStream in = new ObjectInputStream(fis)) {

14 Portfolio newP = (Portfolio)in.readObject();

15 } catch (ClassNotFoundException | IOException i) {

16 System.out.println("Exception reading in Portfolio: " + i);

17 }

The readObject method
restores the object from

the file stream.

The writeObject method writes the
object graph of p to the file stream.

Portfolio is the root
object.

The SerializeStock class.

• Line 6 – 8: A FileOutputStream is chained to an ObjectOutputStream. This
allows the raw bytes generated by the ObjectOutputStream to be written to a file
through the writeObject method. This method walks the object’s graph and writes the
data contained in the non-transient and non-static fields as raw bytes.

• Line 12 – 14: To restore an object from a file, a FileInputStream is chained to an
ObjectInputStream. The raw bytes read by the readObject method restore an
Object containing the non-static and non-transient data fields. This Object must be
cast to expected type.

Java SE 8 Programming 13 - 25

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Serialization Methods

An object being serialized (and deserialized) can control the
serialization of its own fields.
public class MyClass implements Serializable {

// Fields

private void writeObject(ObjectOutputStream oos) throws IOException {

oos.defaultWriteObject();

// Write/save additional fields

oos.writeObject(new java.util.Date());

}

}

• For example, in this class, the current time is written into
the object graph.

• During deserialization, a similar method is invoked:
private void readObject(ObjectInputStream ois) throws
ClassNotFoundException, IOException {}

defaultWriteObject is called
to perform the serialization of this

class’ fields.

The writeObject method is invoked on the object being serialized. If the object does not
contain this method, the defaultWriteObject method is invoked instead.

• This method must also be called once and only once from the object’s writeObject
method.

During deserialization, the readObject method is invoked on the object being deserialized
(if present in the class file of the object). The signature of the method is important.

private void readObject(ObjectInputStream ois) throws

ClassNotFoundException, IOException {

ois.defaultReadObject();

// Print the date this object was serialized

System.out.println ("Restored from date: " +

(java.util.Date)ois.readObject()));

}

Java SE 8 Programming 13 - 26

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

readObject: Example

1 public class Stock implements Serializable {

2 private static final long serialVersionUID = 100L;

3 private String symbol;

4 private int shares;

5 private double purchasePrice;

6 private transient double currPrice;

7

8 public Stock(String symbol, int shares, double purchasePrice) {

9 this.symbol = symbol;

10 this.shares = shares;

11 this.purchasePrice = purchasePrice;

12 setStockPrice();

13 }

14

15 // This method is called post-serialization

16 private void readObject(ObjectInputStream ois)

17 throws IOException, ClassNotFoundException {

18 ois.defaultReadObject();

19 // perform other initialization

20 setStockPrice();

21 }

22 }

Stock currPrice is set by the
setStockPrice method during
creation of the Stock object, but

the constructor is not called during
deserialization.

Stock currPrice is set after the
other fields are deserialized.

In the Stock class, the readObject method is provided to ensure that the stock’s
currPrice is set (by the setStockPrice method) after deserialization of the Stock object.

Note: The signature of the readObject method is critical for this method to be called during
deserialization.

Java SE 8 Programming 13 - 27

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Summary

In this lesson, you should have learned how to:

• Describe the basics of input and output in Java

• Read data from and write data to the console

• Use streams to read and write files

• Write and read objects by using serialization

Java SE 8 Programming 13 - 28

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practice 13-1 Overview: Writing a Simple
Console I/O Application

This practice covers the following topics:

• Writing a main class that accepts a file name as an
argument

• Using System console I/O to read a search string

• Using stream chaining to use the appropriate method to
search for the string in the file and report the number of
occurrences

• Continuing to read from the console until an exit sequence
is entered

In this practice, you will write the code necessary to read a file name as an application
argument, and use the System console to read from standard input until a termination
character is typed in.

Java SE 8 Programming 13 - 29

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practice 13-2 Overview: Serializing and
Deserializing a ShoppingCart

This practice covers the following topics:
• Creating an application that serializes a ShoppingCart object

that is composed of an ArrayList of Item objects

• Using the transient keyword to prevent the serialization of
the ShoppingCart total. This will allow items to vary their
cost.

• Using the writeObject method to store today's date on the
serialized stream

• Using the readObject method to
recalculate the total cost of the cart after
deserialization and print the date that the
object was serialized

Java SE 8 Programming 13 - 30

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

The purpose of chaining streams together is to:

a. Allow the streams to add functionality

b. Change the direction of the stream

c. Modify the access of the stream

d. Meet the requirements of JDK 7

Java SE 8 Programming 13 - 31

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

To prevent the serialization of operating system–specific fields,
you should mark the field:
a. private

b. static

c. transient

d. final

Java SE 8 Programming 13 - 32

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Given the following fragments:
public MyClass implements Serializable {

private String name;

private static int id = 10;

private transient String keyword;

public MyClass(String name, String keyword) {

this.name = name; this.keyword = keyword;

}

}

MyClass mc = new MyClass ("Zim", "xyzzy");

Assuming no other changes to the data, what is the value of name
and keyword fields after deserialization of the mc object instance?

a. Zim, ""

b. Zim, null

c. Zim, xyzzy

d. "", null

Java SE 8 Programming 13 - 33

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Java File I/O (NIO.2)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Objectives

After completing this lesson, you should be able to:
• Use the Path interface to operate on file and directory

paths
• Use the Files class to check, delete, copy, or move a file

or directory

• Use Stream API with NIO2

Java SE 8 Programming 14 - 2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

New File I/O API (NIO.2)

Improved File System Interface

Complete Socket-Channel Functionality

Scalable Asynchronous I/O

NIO API in JSR 51 established the basis for NIO in Java, focusing on buffers, channels, and
charsets. JSR 51 delivered the first piece of the scalable socket I/Os into the platform,
providing a non-blocking, multiplexed I/O API, thus allowing the development of highly
scalable servers without having to resort to native code.

For many developers, the most significant goal of JSR 203 is to address issues with
java.io.File by developing a new file system interface.

The new API:

• Works more consistently across platforms

• Makes it easier to write programs that gracefully handle the failure of file system
operations

• Provides more efficient access to a larger set of file attributes

• Allows developers of sophisticated applications to take advantage of platform-specific
features when absolutely necessary

• Allows support for non-native file systems, to be “plugged in” to the platform

Java SE 8 Programming 14 - 3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Limitations of java.io.File

Does not work well with symbolic links

Very limited set of
file attributesPerformance issues

Scalability issues

Very basic file system access functionality

The Java I/O File API (java.io.File) presented challenges for developers.

• Many methods did not throw exceptions when they failed, so it was impossible to obtain
a useful error message.

• Several operations were missing (file copy, move, and so on).

• The rename method did not work consistently across platforms.

• There was no real support for symbolic links.

• More support for metadata was desired, such as file permissions, file owner, and other
security attributes.

• Accessing file metadata was inefficient—every call for metadata resulted in a system
call, which made the operations very inefficient.

• Many of the File methods did not scale. Requesting a large directory listing on a server
could result in a hang.

• It was not possible to write reliable code that could recursively walk a file tree and
respond appropriately if there were circular symbolic links.

Further, the overall I/O was not written to be extended. Developers had requested the ability
to develop their own file system implementations. For example, by keeping a pseudofile
system in memory, or by formatting files as zip files.

Java SE 8 Programming 14 - 4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

File Systems, Paths, Files

In NIO.2, both files and directories are represented by a path,
which is the relative or absolute location of the file or directory.

/

admin

homevar

oracle

finance.xls logfile.txt

File Systems

Prior to the NIO.2 implementation in JDK 7, files were represented by the java.io.File
class.

In NIO.2, instances of java.nio.file.Path objects are used to represent the relative or
absolute location of a file or directory.

File systems are hierarchical (tree) structures. File systems can have one or more root
directories. For example, typical Windows machines have at least two disk root nodes: C:\
and D:\.

Note that file systems may also have different characteristics for path separators, as shown in
the slide.

Java SE 8 Programming 14 - 5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Relative Path Versus Absolute Path

• A path is either relative or absolute.

• An absolute path always contains the root element and the
complete directory list required to locate the file.

• Example:

• A relative path must be combined with another path in
order to access a file.

• Example:

...
/home/peter/statusReport
...

...
clarence/foo
...

A path can either be relative or absolute. An absolute path always contains the root element
and the complete directory list required to locate the file. For example,
/home/peter/statusReport is an absolute path. All the information needed to locate the
file is contained in the path string.

A relative path must be combined with another path in order to access a file. For example,
clarence/foo is a relative path. Without more information, a program cannot reliably locate
the clarence/foo directory in the file system.

Java SE 8 Programming 14 - 6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Java NIO.2 Concepts

Prior to JDK 7, the java.io.File class was the entry point
for all file and directory operations. With NIO.2, there is a new
package and classes:
• java.nio.file.Path: Locates a file or a directory by

using a system-dependent path
• java.nio.file.Files: Using a Path, performs

operations on files and directories
• java.nio.file.FileSystem: Provides an interface to

a file system and a factory for creating a Path and other
objects that access a file system

• All the methods that access the file system throw
IOException or a subclass.

Java NIO.2

A significant difference between NIO.2 and java.io.File is the architecture of access to
the file system. With the java.io.File class, the methods used to manipulate path
information are in the same class with methods used to read and write files and directories.

In NIO.2, the two concerns are separated. Paths are created and manipulated using the Path
interface, while operations on files and directories is the responsibility of the Files class,
which operates only on Path objects.

Finally, unlike java.io.File, Files class methods that operate directly on the file system,
throw an IOException (or a subclass). Subclasses provide details on what the cause of the
exception was.

Java SE 8 Programming 14 - 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Path Interface

FileSystem fs = FileSystems.getDefault();

Path p1 = fs.getPath (“/home/oracle/labs/resources/myFile.txt");

Path p1 = Paths.get(“/home/oracle/labs/resources/myFile.txt");

Path p2 = Paths.get(“/home/oracle", "labs", "resources", "myFile.txt");

• The java.nio.file.Path interface provides the entry
point for the NIO.2 file and directory manipulation.

• To obtain a Path object, obtain an instance of the default
file system, and then invoke the getPath method:

Java SE 8 Programming 14 - 8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Path Interface Features

The Path interface defines the methods used to locate a file or
a directory in a file system. These methods include:

• To access the components of a path:
– getFileName, getParent, getRoot, getNameCount

• To operate on a path:
– normalize, toUri, toAbsolutePath, subpath,

resolve, relativize

• To compare paths:
– startsWith, endsWith, equals

Path Objects Are Like String Objects

It is best to think of Path objects in the same way you think of String objects. Path objects
can be created from a single text string, or a set of components:

• A root component, that identifies the file system hierarchy

• A name element, farthest from the root element, that defines the file or directory the path
points to

• Additional elements may be present as well, separated by a special character or
delimiter that identify directory names that are part of the hierarchy.

Path objects are immutable. Once created, operations on Path objects return new Path
objects.

Java SE 8 Programming 14 - 9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Path: Example

1 public class PathTest

2 public static void main(String[] args) {

3 Path p1 = Paths.get(args[0]);

4 System.out.format("getFileName: %s%n", p1.getFileName());

5 System.out.format("getParent: %s%n", p1.getParent());

6 System.out.format("getNameCount: %d%n", p1.getNameCount());

7 System.out.format("getRoot: %s%n", p1.getRoot());

8 System.out.format("isAbsolute: %b%n", p1.isAbsolute());

9 System.out.format("toAbsolutePath: %s%n", p1.toAbsolutePath());

10 System.out.format("toURI: %s%n", p1.toUri());

11 }

12 }

java PathTest /home/oracle/file1.txt

getFileName: file1.txt

getParent: /home/oracle

getNameCount: 3

getRoot: /

isAbsolute: true

toAbsolutePath: /home/oracle/file1.txt

toURI: file:///home/oracle/file1.txt

Unlike the java.io.File class, files and directories are represented by instances of Path
objects in a system-dependent way.

The Path interface provides several methods for reporting information about the path:

• Path getFileName: The end point of this Path, returned as a Path object

• Path getParent: The parent path or null. Everything in Path up to the file name (file
or directory)

• int getNameCount: The number of name elements that make up this path

• Path getRoot: The root component of this Path

• boolean isAbsolute: true if this path contains a system-dependent root element.
Note: Because this example is being run on a Windows machine, the system-
dependent root element contains a drive letter and colon. On a UNIX-based OS,
isAbsolute returns true for any path that begins with a slash.

• Path toAbsolutePath: Returns a path representing the absolute path of this path

• java.net.URI toUri: Returns an absolute URI

Note: A Path object can be created for any path. The actual file or directory need not exist.

Java SE 8 Programming 14 - 10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Removing Redundancies from a Path

• Many file systems use “.” notation to denote the current
directory and “..” to denote the parent directory.

• The following examples both include redundancies:

• The normalize method removes any redundant
elements, which includes any “.” or “directory/..”
occurrences.

• Example:

/home/./clarence/foo
/home/peter/../clarence/foo

Path p = Paths.get("/home/peter/../clarence/foo");
Path normalizedPath = p.normalize();

/home/clarence/foo

Many file systems use “.” notation to denote the current directory and “..” to denote the
parent directory. You might have a situation where a Path contains redundant directory
information. Perhaps a server is configured to save its log files in the “/dir/logs/.”
directory, and you want to delete the trailing “/.” notation from the path.

The normalize method removes any redundant elements, which includes any “.” or
“directory/..” occurrences. The slide examples would be normalized to
/home/clarence/foo.

It is important to note that normalize does not check the file system when it cleans up a
path. It is a purely syntactic operation. In the second example, if peter were a symbolic link,
removing peter/.. might result in a path that no longer locates the intended file.

Java SE 8 Programming 14 - 11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

oracle/Temp

Creating a Subpath

• A portion of a path can be obtained by creating a subpath
using the subpath method:
Path subpath(int beginIndex, int endIndex);

• The element returned by endIndex is one less that the
endIndex value.

• Example:

Path p1 = Paths.get ("/home/oracle/Temp/foo/bar");

Path p2 = p1.subpath (1, 3);

home= 0
oracle = 1
Temp = 2

Include the element at index 2.

The element name closest to the root has index 0.

The element farthest from the root has index count-1.

Note: The returned Path object has the name elements that begin at beginIndex and
extend to the element at index endIndex-1.

Java SE 8 Programming 14 - 12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Joining Two Paths

• The resolve method is used to combine two paths.

• Example:

• Passing an absolute path to the resolve method returns
the passed-in path.

Path p1 = Paths.get("/home/clarence/foo");
p1.resolve("bar"); // Returns /home/clarence/foo/bar

Paths.get("foo").resolve("/home/clarence"); // Returns /home/clarence

The resolve method is used to combine paths. It accepts a partial path, which is a path that
does not include a root element, and that partial path is appended to the original path.

Java SE 8 Programming 14 - 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Symbolic Links

/

home

clarence peter logFile (file)

foo

bar statusReport (file)

homeLogFile
(file)

log

var

File system objects are most typically directories or files. Everyone is familiar with these
objects. But some file systems also support the notion of symbolic links. A symbolic link is
also referred to as a “symlink” or a “soft link.”

A symbolic link is a special file that serves as a reference to another file. A symbolic link is
usually transparent to the user. Reading or writing to a symbolic link is the same as reading or
writing to any other file or directory.

In the slide’s diagram, logFile appears to the user to be a regular file, but it is actually a
symbolic link to /var/log/homeLogFile. homeLogFile is the target of the link.

Java SE 8 Programming 14 - 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Working with Links

• Path interface is “link aware.”

• Every Path method either:

– Detects what to do when a symbolic link is encountered, or

– Provides an option enabling you to configure the behavior
when a symbolic link is encountered

createSymbolicLink(Path, Path, FileAttribute<?>)

createLink(Path, Path) isSymbolicLink(Path) readSymbolicLink(Path)

The java.nio.file package and the Path interface in particular are “link aware.” Every
Path method either detects what to do when a symbolic link is encountered, or it provides an
option enabling you to configure the behavior when a symbolic link is encountered.

Some file systems also support hard links. Hard links are more restrictive than symbolic links,
as follows:

• The target of the link must exist.

• Hard links are generally not allowed on directories.

• Hard links are not allowed to cross partitions or volumes. Therefore, they cannot exist
across file systems.

• A hard link looks, and behaves, like a regular file, so they can be hard to find.

• A hard link is, for all intents and purposes, the same entity as the original file. They have
the same file permissions, time stamps, and so on. All attributes are identical.

Because of these restrictions, hard links are not used as often as symbolic links, but the Path
methods work seamlessly with hard links.

Java SE 8 Programming 14 - 15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

File Operations

Checking a File or Directory

Deleting a File or Directory

Copying a File or Directory

Moving a File or Directory

Managing Metadata

Reading, Writing, and Creating Files

Random Access Files

Creating and Reading Directories

The java.nio.file.Files class is the primary entry point for operations on Path
objects.

Static methods in this class read, write, and manipulate files and directories represented by
Path objects.

The Files class is also link aware—methods detect symbolic links in Path objects and
automatically manage links or provide options for dealing with links.

Java SE 8 Programming 14 - 16

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Checking a File or Directory

A Path object represents the concept of a file or a directory
location. Before you can access a file or directory, you should
first access the file system to determine whether it exists using
the following Files methods:

• exists(Path p, LinkOption... option)
Tests to see whether a file exists. By default, symbolic
links are followed.

• notExists(Path p, LinkOption... option)
Tests to see whether a file does not exist. By default,
symbolic links are followed.

• Example:
Path p = Paths.get(args[0]);

System.out.format("Path %s exists: %b%n", p,

Files.exists(p, LinkOption.NOFOLLOW_LINKS));

Optional argument

Recall that Path objects may point to files or directories that do not exist. The exists() and
notExists() methods are used to determine whether the Path points to a legitimate file or
directory, and the particulars of that file or directory.

When testing for the existence of a file, there are three outcomes possible:

• The file is verified to exist.

• The file is verified to not exist.

• The file’s status is unknown. This result can occur when the program does not have
access to the file.

Note: !Files.exists(path) is not equivalent to Files.notExists(path). If both
exists and notExists return false, the existence of the file or directory cannot be
determined. For example, in Windows, it is possible to achieve this by requesting the status of
an offline drive, such as a CD-ROM drive.

Java SE 8 Programming 14 - 17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Checking a File or Directory

To verify that a file can be accessed, the Files class provides
the following boolean methods.

• isReadable(Path)

• isWritable(Path)

• isExecutable(Path)

Note that these tests are not atomic with respect to other file
system operations. Therefore, the results of these tests may
not be reliable once the methods complete.
• The isSameFile (Path, Path) method tests to see

whether two paths point to the same file. This is
particularly useful in file systems that support symbolic
links.

The result of any of these tests is immediately outdated once the operation completes.
According to the documentation: “Note that result of this method is immediately outdated.
There is no guarantee that a subsequent attempt to open the file for writing will succeed (or
even that it will access the same file). Care should be taken when using this method in
security-sensitive applications.”

Java SE 8 Programming 14 - 18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Creating Files and Directories

Files and directories can be created using one of the following
methods:

Files.createFile (Path dir);

Files.createDirectory (Path dir);

• The createDirectories method can be used to create
directories that do not exist, from top to bottom:

Files.createDirectories(Paths.get("/home/oracle/Temp/foo/bar/example"));

The Files class also has methods to create temporary files and directories, hard links, and
symbolic links.

Java SE 8 Programming 14 - 19

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Deleting a File or Directory

You can delete files, directories, or links. The Files class
provides two methods:
• delete(Path)

• deleteIfExists(Path)
//...
Files.delete(path);
//...

//...
Files.deleteIfExists(Path)
//...

The delete(Path) method deletes the file or throws an exception if the deletion fails. For
example, if the file does not exist, a NoSuchFileException is thrown.

The deleteIfExists(Path) method also deletes the file, but if the file does not exist, no
exception is thrown. Failing silently is useful when you have multiple threads deleting files and
you do not want to throw an exception just because one thread did so first.

Java SE 8 Programming 14 - 20

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Copying a File or Directory

• You can copy a file or directory by using the copy(Path,
Path, CopyOption...) method.

• When directories are copied, the files inside the directory
are not copied.

• Example:

//...
copy(Path, Path, CopyOption...)
//...

REPLACE_EXISTING
COPY_ATTRIBUTES
NOFOLLOW_LINKS

StandardCopyOption parameters

import static java.nio.file.StandardCopyOption.*;
//...
Files.copy(source, target, REPLACE_EXISTING, NOFOLLOW_LINKS);

You can copy a file or directory by using the copy(Path, Path, CopyOption...)
method. The copy fails if the target file exists, unless the REPLACE_EXISTING option is
specified.

Directories can be copied. However, files inside the directory are not copied, so the new
directory is empty even when the original directory contains files.

When copying a symbolic link, the target of the link is copied. If you want to copy the link
itself, and not the contents of the link, specify either the NOFOLLOW_LINKS or
REPLACE_EXISTING option.

The following StandardCopyOption and LinkOption enums are supported:

• REPLACE_EXISTING: Performs the copy even when the target file already exists. If the
target is a symbolic link, the link itself is copied (and not the target of the link). If the
target is a non-empty directory, the copy fails with the
FileAlreadyExistsException exception.

• COPY_ATTRIBUTES: Copies the file attributes associated with the file to the target file.
The exact file attributes supported are file system– and platform-dependent, but last-
modified-time is supported across platforms and is copied to the target file.

• NOFOLLOW_LINKS: Indicates that symbolic links should not be followed. If the file to be
copied is a symbolic link, the link is copied (and not the target of the link).

Java SE 8 Programming 14 - 21

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Moving a File or Directory

• You can move a file or directory by using the move(Path,
Path, CopyOption...) method.

• Moving a directory will not move the contents of the
directory.

• Example:

//...
move(Path, Path, CopyOption...)
//...

REPLACE_EXISTING
ATOMIC_MOVE

StandardCopyOption parameters

import static java.nio.file.StandardCopyOption.*;
//...
Files.move(source, target, REPLACE_EXISTING);

Guidelines for moves:

• If the target path is a directory and that directory is empty, the move succeeds if
REPLACE_EXISTING is set.

• If the target directory does not exist, the move succeeds. Essentially, this is a rename of
the directory.

• If the target directory exists and is not empty, a DirectoryNotEmptyException is
thrown.

• If the source is a file and the target is a directory that exists, and REPLACE_EXISTING
is set, the move will rename the file to the intended directory name.

To move a directory containing files to another directory, essentially you need to recursively
copy the contents of the directory, and then delete the old directory.

You can also perform the move as an atomic file operation using ATOMIC_MOVE.

• If the file system does not support an atomic move, an exception is thrown. With an
ATOMIC_MOVE you can move a file into a directory and be guaranteed that any process
watching the directory accesses a complete file.

Java SE 8 Programming 14 - 22

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

List the Contents of a Directory

To get a list of the files in the current directory, use the
Files.list() method.
public class FileList {

public static void main(String[] args) {

try(Stream<Path> files = Files.list(Paths.get("."))){

files
.forEach(line -> System.out.println(line));

} catch (IOException e){
System.out.println("Message: " + e.getMessage());

}
}

}

Java SE 8 Programming 14 - 23

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Walk the Directory Structure

The Files.walk() method walks a directory structure.

public class A11FileWalk {

public static void main(String[] args) {

try(Stream<Path> files = Files.walk(Paths.get("."))){

files
.forEach(line -> System.out.println(line));

} catch (Exception e){
System.out.println("Message: " + e.getMessage());

}
}

}

Java SE 8 Programming 14 - 24

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

BufferedReader File Stream

The new lines() method converts a BufferedReader into
a stream.
public class BufferedRead {
public static void main(String[] args) {

try(BufferedReader bReader =
new BufferedReader(new FileReader("tempest.txt"))){

bReader.lines()
.forEach(line ->

System.out.println("Line: " + line));

} catch (IOException e){
System.out.println("Message: " + e.getMessage());

}
}

}

Java SE 8 Programming 14 - 25

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

NIO File Stream

The lines() method can be called using NIO classes

public class ReadNio {

public static void main(String[] args) {

try(Stream<String> lines =
Files.lines(Paths.get("tempest.txt"))){

lines.forEach(line ->
System.out.println("Line: " + line));

} catch (IOException e){
System.out.println("Error: " + e.getMessage());

}
}

}

Java SE 8 Programming 14 - 26

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Read File into ArrayList

Use readAllLines() to load a file into an ArrayList.
public class ReadAllNio {
public static void main(String[] args) {

Path file = Paths.get("tempest.txt");
List<String> fileArr;

try{

fileArr = Files.readAllLines(file);

fileArr.stream()
.filter(line -> line.contains("PROSPERO"))
.forEach(line -> System.out.println(line));

} catch (IOException e){
System.out.println("Message: " + e.getMessage());

}
}

}

Java SE 8 Programming 14 - 27

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Managing Metadata

Method Explanation

size Returns the size of the specified file in bytes

isDirectory
Returns true if the specified Path locates a file that is a
directory

isRegularFile
Returns true if the specified Path locates a file that is a
regular file

isSymbolicLink
Returns true if the specified Path locates a file that is a
symbolic link

isHidden
Returns true if the specified Path locates a file that is
considered hidden by the file system

getLastModifiedTime
Returns or sets the specified file’s last modified time

setLastModifiedTime

getAttribute
Returns or sets the value of a file attribute

setAttribute

If a program needs multiple file attributes around the same time, it can be inefficient to use
methods that retrieve a single attribute. Repeatedly accessing the file system to retrieve a
single attribute can adversely affect performance. For this reason, the Files class provides
two readAttributes methods to fetch a file’s attributes in one bulk operation.

• readAttributes(Path, String, LinkOption...)

• readAttributes(Path, Class<A>, LinkOption...)

Java SE 8 Programming 14 - 28

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Symbolic Links

/

home

clarence peter logFile (file)

foo

bar statusReport (file)

homeLogFile
(file)

logs

var

File system objects are most typically directories or files. Everyone is familiar with these
objects. But some file systems also support the notion of symbolic links. A symbolic link is
also referred to as a “symlink” or a “soft link.”

A symbolic link is a special file that serves as a reference to another file. A symbolic link is
usually transparent to the user. Reading or writing to a symbolic link is the same as reading or
writing to any other file or directory.

In the slide’s diagram, logFile appears to the user to be a regular file, but it is actually a
symbolic link to dir/logs/homeLogFile. homeLogFile is the target of the link.

Java SE 8 Programming 14 - 29

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Summary

In this lesson, you should have learned how to:
• Use the Path interface to operate on file and directory

paths
• Use the Files class to check, delete, copy, or move a file

or directory

• Use Stream API with NIO2

Java SE 8 Programming 14 - 30

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practice Overview

Practice 14-1: Working with Files

In this practice, read text files using new features in Java 8 and
the lines method.

Java SE 8 Programming 14 - 31

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practice Overview

Practice 14-2: Working with Directories

In this practice, list directories and files using new features
found in Java 8.

Java SE 8 Programming 14 - 32

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Given any starting directory path, which FileVisitor
method(s) would you use to delete a file tree?
a. preVisitDirectory()

b. postVisitDirectory()

c. visitFile()

d. visitDirectory()

Java SE 8 Programming 14 - 33

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Given a Path object with the following path:

/export/home/duke/../peter/./documents

What Path method would remove the redundant elements?

a. normalize

b. relativize

c. resolve

d. toAbsolutePath

Java SE 8 Programming 14 - 34

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Given the following fragment:
Path p1 = Paths.get("/export/home/peter");

Path p2 = Paths.get("/export/home/peter2");

Files.move(p1, p2, StandardCopyOption.REPLACE_EXISTING);

If the peter2 directory does not exist, and the peter directory
is populated with subfolders and files, what is the result?
a. DirectoryNotEmptyException

b. NotDirectoryException

c. Directory peter2 is created.

d. Directory peter is copied to peter2.

e. Directory peter2 is created and populated with files and
directories from peter.

Java SE 8 Programming 14 - 35

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Given this fragment:
Path source = Paths.get(args[0]);

Path target = Paths.get(args[1]);

Files.copy(source, target);

Assuming source and target are not directories, how can
you prevent this copy operation from generating
FileAlreadyExistsException?

a. Delete the target file before the copy.

b. Use the move method instead.

c. Use the copyExisting method instead.

d. Add the REPLACE_EXISTING option to the method.

Java SE 8 Programming 14 - 36

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

To copy, move, or open a file or directory using NIO.2, you
must first create an instance of:
a. Path

b. Files

c. FileSystem

d. Channel

Java SE 8 Programming 14 - 37

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Concurrency

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Objectives

After completing this lesson, you should be able to:

• Describe operating system task scheduling
• Create worker threads using Runnable and Callable

• Use an ExecutorService to concurrently execute tasks

• Identify potential threading problems
• Use synchronized and concurrent atomic to manage

atomicity

• Use monitor locks to control the order of thread execution
• Use the java.util.concurrent collections

Java SE 8 Programming 15 - 2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Task Scheduling

Modern operating systems use preemptive multitasking to
allocate CPU time to applications. There are two types of tasks
that can be scheduled for execution:

• Processes: A process is an area of memory that contains
both code and data. A process has a thread of execution
that is scheduled to receive CPU time slices.

• Thread: A thread is a scheduled execution of a process.
Concurrent threads are possible. All threads for a process
share the same data memory but may be following
different paths through a code section.

Preemptive Multitasking

Modern computers often have more tasks to execute than CPUs. Each task is given an
amount of time (called a time slice) during which it can execute on a CPU. A time slice is
usually measured in milliseconds. When the time slice has elapsed, the task is forcefully
removed from the CPU and another task is given a chance to execute.

Java SE 8 Programming 15 - 3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Legacy Thread and Runnable

Prior to Java 5, the Thread class was used to create and start
threads. Code to be executed by a thread is placed in a class,
which does either of the following:
• Extends the Thread class

– Simpler code

• Implements the Runnable interface

– More flexible
– extends is still free.

Java SE 8 Programming 15 - 4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Extending Thread

Extend java.lang.Thread and override the run method:

public class ExampleThread extends Thread {

@Override

public void run() {

for(int i = 0; i < 10; i++) {

System.out.println("i:" + i);

}

}

}

The run Method

The code to be executed in a new thread of execution should be placed in a run method. You
should avoid calling the run method directly. Calling the run method does not start a new
thread and the effect would be no different than calling any other method.

Java SE 8 Programming 15 - 5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Implementing Runnable

Implement java.lang.Runnable and implement the run
method:
public class ExampleRunnable implements Runnable {

private final String name;

public ExampleRunnable(String name) {

this.name = name;

}

@Override

public void run() {

for (int i = 0; i < 10; i++) {

System.out.println(name + ":" + i);

}

}

}

The run Method

Just as when extending Thread, calling the run method does not start a new thread. The
benefit of implementing Runnable is that you may still extend a class of your choosing.

Java SE 8 Programming 15 - 6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

The java.util.concurrent Package

Java 5 introduced the java.util.concurrent package,
which contains classes that are useful in concurrent
programming. Features include:

• Concurrent collections

• Synchronization and locking alternatives

• Thread pools
– Fixed and dynamic thread count pools available

– Parallel divide and conquer (Fork-Join) new in Java 7

Java SE 8 Programming 15 - 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Recommended Threading Classes

Traditional Thread related APIs are difficult to code properly.
Recommended concurrency classes include:
• java.util.concurrent.ExecutorService, a higher

level mechanism used to execute tasks
– It may create and reuse Thread objects for you.

– It allows you to submit work and check on the results in the
future.

• The Fork-Join framework, a specialized work-stealing
ExecutorService new in Java 7

Java SE 8 Programming 15 - 8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

java.util.concurrent.ExecutorService

An ExecutorService is used to execute tasks.

• It eliminates the need to manually create and manage
threads.

• Tasks might be executed in parallel depending on the
ExecutorService implementation.

• Tasks can be:
– java.lang.Runnable

– java.util.concurrent.Callable

• Implementing instances can be obtained with Executors.

ExecutorService es = Executors.newCachedThreadPool();

The Behavior of an ExecutorService

A cached thread pool ExecutorService:

• Creates new threads as needed

• Reuses its threads (Its threads do not die after finishing their task.)

• Terminates threads that have been idle for 60 seconds

Other types of ExecutorService implementations are available:

int cpuCount = Runtime.getRuntime().availableProcessors();

ExecutorService es = Executors.newFixedThreadPool(cpuCount);

A fixed thread pool ExecutorService:

• Contains a fixed number of threads

• Reuses its threads (Its threads do not die after finishing their task.)

• Queues up work until a thread is available

• Could be used to avoid over working a system with CPU-intensive tasks

Java SE 8 Programming 15 - 9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Example ExecutorService

This example illustrates using an ExecutorService to
execute Runnable tasks:

package com.example;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class ExecutorExample {

public static void main(String[] args) {

ExecutorService es = Executors.newCachedThreadPool();

es.execute(new ExampleRunnable("one"));

es.execute(new ExampleRunnable("two"));

es.shutdown();

}

}

Execute this Runnable
task sometime in the

future

Shut down the executor

Java SE 8 Programming 15 - 10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Shutting Down an ExecutorService

Shutting down an ExecutorService is important because its
threads are nondaemon threads and will keep your JVM from
shutting down.

es.shutdown();

try {

es.awaitTermination(5, TimeUnit.SECONDS);

} catch (InterruptedException ex) {

System.out.println("Stopped waiting early");

}

If you want to wait for the
Callables to finish

Stop accepting new
Callables.

Java SE 8 Programming 15 - 11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

java.util.concurrent.Callable

The Callable interface:

• Defines a task submitted to an ExecutorService

• Is similar in nature to Runnable, but can:

– Return a result using generics

– Throw a checked exception

package java.util.concurrent;

public interface Callable<V> {

V call() throws Exception;

}

Java SE 8 Programming 15 - 12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Example Callable Task

public class ExampleCallable implements Callable {

private final String name;
private final int len;
private int sum = 0;

public ExampleCallable(String name, int len) {
this.name = name;
this.len = len;

}

@Override
public String call() throws Exception {
for (int i = 0; i < len; i++) {

System.out.println(name + ":" + i);
sum += i;

}
return "sum: " + sum;

}
}

Return a String from this
task: the sum of the series

Java SE 8 Programming 15 - 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

java.util.concurrent.Future

The Future interface is used to obtain the results from a
Callable’s V call() method.

Future<V> future = es.submit(callable);

//submit many callables

try {

V result = future.get();

} catch (ExecutionException|InterruptedException ex) {

}

Gets the result of the Callable’s
call method (blocks if needed).

ExecutorService controls
when the work is done.

If the Callable threw
an Exception

Waiting on a Future

Because the call to Future.get() will block, you must do one of the following:

• Submit all your work to the ExecutorService before calling any Future.get()
methods.

• Be prepared to wait for that Future to obtain the result.

• Use a non-blocking method such as Future.isDone() before calling Future.get()
or use Future.get(long timeout, TimeUnit unit), which will throw a
TimeoutException if the result is not available within a given duration.

Java SE 8 Programming 15 - 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Example

public static void main(String[] args) {

ExecutorService es = Executors.newFixedThreadPool(4);
Future<String> f1 = es.submit(new ExampleCallable("one",10));
Future<String> f2 = es.submit(new ExampleCallable("two",20));

try {
es.shutdown();
es.awaitTermination(5, TimeUnit.SECONDS);
String result1 = f1.get();
System.out.println("Result of one: " + result1);
String result2 = f2.get();
System.out.println("Result of two: " + result2);

} catch (ExecutionException | InterruptedException ex) {
System.out.println("Exception: " + ex);

}

}

Get the results
of tasks f1 and

f2

Wait 5 seconds for the
tasks to complete

Java SE 8 Programming 15 - 15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Threading Concerns

• Thread Safety
– Classes should continue to behave correctly when accessed

from multiple threads.

• Performance: Deadlock and livelock
– Threads typically interact with other threads. As more

threads are introduced into an application, the possibility
exists that threads will reach a point where they cannot
continue.

Thread safety is really about the ability of a class to perform the same way when it is
accessed by one thread, or multiple threads. Fundamentally, a class performs actions and
holds data. Using this definition of thread safety – a class is thread safe if the actions the
class performs and the data stored are consistent when used accessed by multiple threads.

Deadlock is a situation where thread A is blocked waiting for a condition set by thread B, but
thread B is also blocked waiting for a condition set by thread A.

Livelock is a condition where a thread is not blocked, but cannot move forward because an
operation it continually retries fails. Livelock is related to another condition, starvation, where
a thread attempts to access a resource that it can never access – likely because other higher
priority threads are continually accessing the resource.

Java SE 8 Programming 15 - 16

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Shared Data

Static and instance fields are potentially shared by threads.

public class SharedValue {

private int i;

// Return a unique value

public int getNext() {

return i++;

}

}

Potentially shared
variable

Java SE 8 Programming 15 - 17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Problems with Shared Data

Shared data must be accessed cautiously. Instance and static
fields:

• Are created in an area of memory known as heap space

• Can potentially be shared by any thread

• Might be changed concurrently by multiple threads
– There are no compiler or IDE warnings.

– “Safely” accessing shared fields is your responsibility.

Two threads accessing an instance of the SharedValue class
might produce the following:
i:0,i:0,i:1,i:2,i:3,i:4,i:5,i:6,i:7,i:8,i:9,i:10,i:12,i:11 ...

Out of sequenceZero produced twice

Debugging Threads

Debugging threads can be difficult because the frequency and duration of time each thread is
allocated can vary for many reasons including:

• Thread scheduling is handled by an operating system and operating systems may use
different scheduling algorithms

• Machines have different counts and speeds of CPUs

• Other applications may be placing load on the system

This is one of those cases where an application may seem to function perfectly while in
development, but strange problems might manifest after it is in production because of
scheduling variations. It is your responsibility to safeguard access to shared variables.

Java SE 8 Programming 15 - 18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Nonshared Data

Some variable types are never shared. The following types are
always thread-safe:

• Local variables

• Method parameters

• Exception handler parameters

• Immutable data

Shared Thread-Safe Data

Any shared data that is immutable, such as String objects or final fields, are thread-safe
because they can only be read and not written.

Java SE 8 Programming 15 - 19

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Atomic Operations

Atomic operations function as a single operation. A single
statement in the Java language is not always atomic.
• i++;

– Creates a temporary copy of the value in i

– Increments the temporary copy
– Writes the new value back to i

• l = 0xffff_ffff_ffff_ffff;

– 64-bit variables might be accessed using two separate 32-bit
operations.

What inconsistencies might two threads incrementing the same
field encounter?

What if that field is long?

Inconsistent Behavior

One possible problem with two threads incrementing the same field is that a lost update might
occur. Imagine if both threads read a value of 41 from a field, increment the value by one, and
then write their results back to the field. Both threads will have done an increment but the
resulting value is only 42. Depending on how the Java Virtual Machine is implemented and
the type of physical CPU being used, you may never or rarely see this behavior. However,
you must always assume that it could happen.

If you have a long value of 0x0000_0000_ffff_ffff and increment it by 1, the result
should be 0x0000_0001_0000_0000. However, because it is legal for a 64-bit field to be
accessed using two separate 32-bit writes, there could temporarily be a value of
0x0000_0001_ffff_ffff or even 0x0000_0000_0000_0000 depending on which bits
are modified first. If a second thread was allowed to read a 64-bit field while it was being
modified by another thread, an incorrect value could be retrieved.

Java SE 8 Programming 15 - 20

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Out-of-Order Execution

• Operations performed in one thread may not appear to
execute in order if you observe the results from another
thread.
– Code optimization may result in out-of-order operation.

– Threads operate on cached copies of shared variables.

• To ensure consistent behavior in your threads, you must
synchronize their actions.
– You need a way to state that an action happens before

another.

– You need a way to flush changes to shared variables back to
main memory.

Synchronizing Actions

Every thread has a working memory in which it keeps its own working copy of variables that it
must use or assign. As the thread executes a program, it operates on these working copies.
There are several actions that will synchronize a thread’s working memory with main memory:

• A volatile read or write of a variable (the volatile keyword)

• Locking or unlocking a monitor (the synchronized keyword)

• The first and last action of a thread

• Actions that start a thread or detect that a thread has terminated

Java SE 8 Programming 15 - 21

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

The synchronized Keyword

The synchronized keyword is used to create thread-safe
code blocks. A synchronized code block:

• Causes a thread to write all of its changes to main memory
when the end of the block is reached

• Is used to group blocks of code for exclusive execution
– Threads block until they can get exclusive access

– Solves the atomic problem

Synchronized code blocks are used to ensure that data that is not thread-safe will not be
accessed concurrently by multiple threads.

Java SE 8 Programming 15 - 22

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

synchronized Methods

3 public class SynchronizedCounter {

4 private static int i = 0;

5

6 public synchronized void increment(){

7 i++;

8 }

9

10 public synchronized void decrement(){

11 i--;

12 }

13

14 public synchronized int getValue(){

15 return i;

16 }

17 }

Synchronized Method Behavior

In the example in the slide, you can call only one method at a time in a
SynchronizedCounter object because all its methods are synchronized. In this
example, the synchronization is per SynchronizedCounter. Two SynchronizedCounter
instances could be used concurrently.

If the methods were not synchronized, calling decrement while getValue is accessed
might result in unpredictable behavior.

Java SE 8 Programming 15 - 23

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

synchronized Blocks

18 public void run(){

19 for (int i = 0; i < countSize; i++){

20 synchronized(this){

21 count.increment();

22 System.out.println(threadName

23 + " Current Count: " + count.getValue());

24 }

25 }

26 }

Synchronization Bottlenecks

Synchronization in multithreaded applications ensures reliable behavior. Because
synchronized blocks and methods are used to restrict a section of code to a single thread,
you are potentially creating performance bottlenecks. synchronized blocks can be used in
place of synchronized methods to reduce the number of lines that are exclusive to a single
thread.

Use synchronization as little as possible for performance, but as much as needed to
guarantee reliability.

Java SE 8 Programming 15 - 24

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Object Monitor Locking

Each object in Java is associated with a monitor, which a
thread can lock or unlock.
• synchronized methods use the monitor for the this

object.
• static synchronized methods use the classes’

monitor.
• synchronized blocks must specify which object’s

monitor to lock or unlock.

synchronized (this) { }

• synchronized blocks can be nested.

Nested synchronized Blocks

A thread can lock multiple monitors simultaneously by using nested synchronized blocks.

Java SE 8 Programming 15 - 25

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Threading Performance

To execute a program as quickly as possible, you must avoid
performance bottlenecks. Some of these bottlenecks are:

• Resource Contention: Two or more tasks waiting for
exclusive use of a resource

• Blocking I/O operations: Doing nothing while waiting for
disk or network data transfers

• Underutilization of CPUs: A single-threaded application
uses only a single CPU

Multithreaded Servers

Even if you do not write code to create new threads of execution, your code might be run in a
multithreaded environment. You must be aware of how threads work and how to write
thread-safe code. When creating code to run inside of another piece of software (such as a
middleware or application server), you must read the product’s documentation to discover
whether threads will be created automatically. For instance, in a Java EE application server,
there is a component called a Servlet that is used to handle HTTP requests. Servlets must
always be thread-safe because the server starts a new thread for each HTTP request.

Java SE 8 Programming 15 - 26

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Performance Issue: Examples

• Deadlock results when two or more threads are blocked
forever, waiting for each other.

synchronized(obj1) {

synchronized(obj2) {

}

}

synchronized(obj2) {

synchronized(obj1) {

}

}

• Starvation and Livelock

Thread 1 pauses after locking
obj1’s monitor.

Thread 2 pauses after locking
obj2’s monitor.

Starvation and livelock are much less common a problem than deadlock, but are still
problems that every designer of concurrent software is likely to encounter.

Starvation

Starvation describes a situation where a thread is unable to gain regular access to shared
resources and is unable to make progress. This happens when shared resources are made
unavailable for long periods by “greedy” threads. For example, suppose an object provides a
synchronized method that often takes a long time to return. If one thread invokes this method
frequently, other threads that also need frequent synchronized access to the same object will
often be blocked.

Livelock

A thread often acts in response to the action of another thread. If the other thread’s action is
also a response to the action of another thread, livelock may result. As with deadlock,
livelocked threads are unable to make further progress. However, the threads are not
blocked; they are simply too busy responding to each other to resume work.

Java SE 8 Programming 15 - 27

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

java.util.concurrent Classes and Packages

The java.util.concurrent package contains a number of
classes that help with your concurrent applications. Here are
just a few examples.
• java.util.concurrent.atomic package

• Lock free thread-safe variables

• CyclicBarrier

• A class that blocks until a specified number of threads are
waiting for the thread to complete.

• Concurrency collections

The use of synchronized code blocks can result in performance bottlenecks. Several
components of the java.util.concurrent package provide alternatives to using
synchronized code blocks.

Java SE 8 Programming 15 - 28

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

The java.util.concurrent.atomic Package

The java.util.concurrent.atomic package contains
classes that support lock-free thread-safe programming on
single variables.

7 public static void main(String[] args) {

8 AtomicInteger ai = new AtomicInteger(5);

9 System.out.println("New value: "

10 + ai.incrementAndGet());

11 System.out.println("New value: "

12 + ai.getAndIncrement());

13 System.out.println("New value: "

14 + ai.getAndIncrement());

15

16 }

An atomic operation increments
value to 6 and returns the value.

Java SE 8 Programming 15 - 29

There is no need to use the synchronized keyword with atomic variables. Methods exist to
increment a value before or after the value is returned.

The output is:

New value: 6

New value: 6

New value: 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

java.util.concurrent.CyclicBarrier

The CyclicBarrier is an example of the synchronizer
category of classes provided by java.util.concurrent.

10 final CyclicBarrier barrier = new CyclicBarrier(2);

// lines omitted

24 public void run() {

25 try {

26 System.out.println("before await - "

27 + threadCount.incrementAndGet());

28 barrier.await();

29 System.out.println("after await - "

30 + threadCount.get());

31 } catch (BrokenBarrierException|InterruptedException
ex) {

32

33 }

Two threads must await before
they can unblock.

May not be
reached

CyclicBarrier Behavior

In this example, if only one thread calls await() on the barrier, that thread may block
forever. After a second thread calls await(), any additional call to await() will again block
until the required number of threads is reached. A CyclicBarrier contains a method,
await(long timeout, TimeUnit unit), which will block for a specified duration and
throw a TimeoutException if that duration is reached.

Synchronizers

A framework of classes in the java.util.concurrent package that provide mechanics for
atomically managing synchronization state, blocking and unblocking threads, and queuing.
The CyclicBarrier class is an example.

Java SE 8 Programming 15 - 30

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

java.util.concurrent.CyclicBarrier

• If line 18 is uncommented, the program will exit

9 public class CyclicBarrierExample implements Runnable{

10 final CyclicBarrier barrier = new CyclicBarrier(2);

11 AtomicInteger threadCount = new AtomicInteger(0);

12

13

14 public static void main(String[] args) {

15 ExecutorService es = Executors.newFixedThreadPool(4);

16

17 CyclicBarrierExample ex = new CyclicBarrierExample();

18 es.submit(ex);

19 //es.submit(ex);

20

21 es.shutdown();

22 }

If the main method runs as shown, the application will just wait. If line 18 is uncommented,
then the program will exit normally.

Java SE 8 Programming 15 - 31

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Thread-Safe Collections

The java.util collections are not thread-safe. To use
collections in a thread-safe fashion:

• Use synchronized code blocks for all access to a collection
if writes are performed

• Create a synchronized wrapper using library methods,
such as
java.util.Collections.synchronizedList(List<T>)

• Use the java.util.concurrent collections

Note: Just because a Collection is made thread-safe, this
does not make its elements thread-safe.

Concurrent Collections

The ConcurrentLinkedQueue class supplies an efficient, scalable, thread-safe,
nonblocking FIFO queue. Five implementations in java.util.concurrent support the
extended BlockingQueue interface, which defines blocking versions of put and take:
LinkedBlockingQueue, ArrayBlockingQueue, SynchronousQueue,
PriorityBlockingQueue, and DelayQueue.

Besides queues, this package supplies Collection implementations designed for use in
multithreaded contexts: ConcurrentHashMap, ConcurrentSkipListMap,
ConcurrentSkipListSet, CopyOnWriteArrayList, and CopyOnWriteArraySet.
When many threads are expected to access a given collection, a ConcurrentHashMap is
normally preferable to a synchronized HashMap, and a ConcurrentSkipListMap is
normally preferable to a synchronized TreeMap. A CopyOnWriteArrayList is preferable
to a synchronized ArrayList when the expected number of reads and traversals greatly
outnumber the number of updates to a list.

Java SE 8 Programming 15 - 32

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

CopyOnWriteArrayList: Example

7 public class ArrayListTest implements Runnable{

8 private CopyOnWriteArrayList<String> wordList =

9 new CopyOnWriteArrayList<>();

10

11 public static void main(String[] args) {

12 ExecutorService es = Executors.newCachedThreadPool();

13 ArrayListTest test = new ArrayListTest();

14

15 es.submit(test); es.submit(test); es.shutdown();

16

17 // Print code here

22 public void run(){

23 wordList.add("A");

24 wordList.add("B");

25 wordList.add("C");

26 }

A CopyOnWriteArrayList is a thread safe ArrayList implementation found in the
java.util.concurrency library.

Note: The three es statements were combined onto one line so the source code would fit in
the slide.

Java SE 8 Programming 15 - 33

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Summary

In this lesson, you should have learned how to:

• Describe operating system task scheduling
• Use an ExecutorService to concurrently execute tasks

• Identify potential threading problems
• Use synchronized and concurrent atomic to manage

atomicity

• Use monitor locks to control the order of thread execution
• Use the java.util.concurrent collections

Java SE 8 Programming 15 - 34

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practice 15-1 Overview:
Using the java.util.concurrent Package

This practice covers the following topics:
• Using a cached thread pool (ExecutorService)

• Implementing Callable

• Receiving Callable results with a Future

In this practice, you create a multithreaded network client.

Java SE 8 Programming 15 - 35

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

An ExecutorService will always attempt to use all of the
available CPUs in a system.

a. True

b. False

Java SE 8 Programming 15 - 36

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Variables are thread-safe if they are:
a. local

b. static

c. final

d. private

Java SE 8 Programming 15 - 37

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

The Fork-Join Framework

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Objectives

After completing this lesson, you should be able to:

• Apply the Fork-Join framework

Java SE 8 Programming 16 - 2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Parallelism

Modern systems contain multiple CPUs. Taking advantage of
the processing power in a system requires you to execute tasks
in parallel on multiple CPUs.

• Divide and conquer: A task should be divided into
subtasks. You should attempt to identify those subtasks
that can be executed in parallel.

• Some problems can be difficult to execute as parallel
tasks.

• Some problems are easier. Servers that support multiple
clients can use a separate task to handle each client.

• Be aware of your hardware. Scheduling too many parallel
tasks can negatively impact performance.

CPU Count

If your tasks are compute-intensive as opposed to I/O intensive, the number of parallel tasks
should not greatly outnumber the number of processors in your system. You can detect the
number of processors easily in Java:
int count = Runtime.getRuntime().availableProcessors();

Java SE 8 Programming 16 - 3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Without Parallelism

Modern systems contain multiple CPUs. If you do not leverage
threads in some way, only a portion of your system’s
processing power will be utilized.

Setting the Stage

If you have a large amount of data to process but only one thread to process that data, a
single CPU will be used. In the slide's graphic, a large set of data (an array, possibly) is being
processed. The array processing could be a simple task, such as finding the highest value in
the array. In a four CPU system, there would be three CPUs sitting idle while the array was
being processed.

Java SE 8 Programming 16 - 4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Naive Parallelism

A simple parallel solution breaks the data to be processed into
multiple sets: one data set for each CPU and one thread to
process each data set.

Splitting the Data

In the slide's graphic, a large set of data (an array, possibly) is split into four subsets of data,
one subset for each CPU. A thread per CPU is created to process the data. After processing
the subsets of data, the results will have to be combined in a meaningful way. There are
several ways to subdivide the large dataset to be processed. It would be overly memory-
intensive to create a new array per thread that contains a copy of a portion of the original
array. Each array can share a reference to the single large array but access only a subset in a
non-blocking thread-safe way.

Java SE 8 Programming 16 - 5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

The Need for the Fork-Join Framework

Splitting datasets into equal sized subsets for each thread to
process has a couple of problems. Ideally all CPUs should be
fully utilized until the task is finished, but:

• CPUs may run at different speeds

• Non-Java tasks require CPU time and may reduce the time
available for a Java thread to spend executing on a CPU

• The data being analyzed
may require varying
amounts of time to
process

Java SE 8 Programming 16 - 6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Work-Stealing

To keep multiple threads busy:

• Divide the data to be processed into a large number of
subsets

• Assign the data subsets to a thread’s processing queue

• Each thread will have many subsets
queued

If a thread finishes all its subsets early,
it can “steal” subsets from
another thread.

Work Granularity

By subdividing the data to be processed until there are more subsets than threads, we are
facilitating “work-stealing.” In work-stealing, a thread that has run out of work can steal work (a
data subset) from the processing queue of another thread. You must determine the optimal
size of the work to add to each thread’s processing queue. Overly subdividing the data to be
processed can cause unnecessary overhead, while insufficiently subdividing the data can
result in underutilization of CPUs.

Java SE 8 Programming 16 - 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

A Single-Threaded Example

int[] data = new int[1024 * 1024 * 256]; //1G

for (int i = 0; i < data.length; i++) {

data[i] = ThreadLocalRandom.current().nextInt();

}

int max = Integer.MIN_VALUE;

for (int value : data) {

if (value > max) {

max = value;

}

}

System.out.println("Max value found:" + max);

A very large dataset

Fill up the array with values.

Sequentially search the array for
the largest value.

Parallel Potential

In this example, there are two separate tasks that could be executed in parallel. Initializing the
array with random values and searching the array for the largest possible value could both be
done in parallel.

Java SE 8 Programming 16 - 8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

java.util.concurrent.ForkJoinTask<V>

A ForkJoinTask object represents a task to be executed.

• A task contains the code and data to be processed. Similar
to a Runnable or Callable.

• A huge number of tasks are created and processed by a
small number of threads in a Fork-Join pool.
– A ForkJoinTask typically creates more ForkJoinTask

instances until the data to processed has been subdivided
adequately.

• Developers typically use the following subclasses:
– RecursiveAction: When a task does not need to return a

result
– RecursiveTask: When a task needs to return a result

Java SE 8 Programming 16 - 9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

RecursiveTask Example

public class FindMaxTask extends RecursiveTask<Integer> {

private final int threshold;

private final int[] myArray;

private int start;

private int end;

public FindMaxTask(int[] myArray, int start, int end,
int threshold) {

// copy parameters to fields

}

protected Integer compute() {

// shown later

}

}

Result type of the task

The data to process

Where the work is done.
Notice the generic return type.

Java SE 8 Programming 16 - 10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

compute Structure

protected Integer compute() {

if DATA_SMALL_ENOUGH {

PROCESS_DATA

return RESULT;

} else {

SPLIT_DATA_INTO_LEFT_AND_RIGHT_PARTS

TASK t1 = new TASK(LEFT_DATA);

t1.fork();

TASK t2 = new TASK(RIGHT_DATA);

return COMBINE(t2.compute(), t1.join());

}

} Block until done

Asynchronously execute

Process in current thread

Java SE 8 Programming 16 - 11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

compute Example (Below Threshold)

protected Integer compute() {

if (end - start < threshold) {

int max = Integer.MIN_VALUE;

for (int i = start; i <= end; i++) {

int n = myArray[i];

if (n > max) {

max = n;

}

}

return max;

} else {

// split data and create tasks

}

}

You decide the
threshold.

The range within
the array

Java SE 8 Programming 16 - 12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

compute Example (Above Threshold)

protected Integer compute() {

if (end - start < threshold) {

// find max

} else {

int midway = (end - start) / 2 + start;

FindMaxTask a1 =

new FindMaxTask(myArray, start, midway, threshold);

a1.fork();

FindMaxTask a2 =

new FindMaxTask(myArray, midway + 1, end, threshold);

return Math.max(a2.compute(), a1.join());

}

}

Task for left half of data

Task for right half of data

Memory Management

Notice that the same array is passed to every task but with different start and end values. If
the subset of values to be processed were copied into a new array each time a task was
created, memory usage would quickly skyrocket.

Java SE 8 Programming 16 - 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

ForkJoinPool Example

A ForkJoinPool is used to execute a ForkJoinTask. It
creates a thread for each CPU in the system by default.

ForkJoinPool pool = new ForkJoinPool();

FindMaxTask task =

new FindMaxTask(data, 0, data.length-1, data.length/16);

Integer result = pool.invoke(task);

The task's compute method is
automatically called .

Java SE 8 Programming 16 - 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Fork-Join Framework Recommendations

• Avoid I/O or blocking operations.
– Only one thread per CPU is created by default. Blocking

operations would keep you from utilizing all CPU resources.

• Know your hardware.
– A Fork-Join solution will perform slower on a one-CPU

system than a standard sequential solution.

– Some CPUs increase in speed when only using a single
core, potentially offsetting any performance gain provided by
Fork-Join.

• Know your problem.
– Many problems have additional overhead if executed in

parallel (parallel sorting, for example).

Parallel Sorting

When using Fork-Join to sort an array in parallel, you end up sorting many small arrays and
then having to combine the small sorted arrays into larger sorted arrays. For an example see
the sample application provided with the JDK in C:\Program
Files\Java\jdk1.7.0\sample\forkjoin\mergesort.

Java SE 8 Programming 16 - 15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Summary

In this lesson, you should have learned how to:

• Apply the Fork-Join framework

Java SE 8 Programming 16 - 16

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practice 16-1 Overview:
Using the Fork-Join Framework

This practice covers the following topics:
• Extending RecursiveAction

• Creating and using a ForkJoinPool

In this practice, you create a multithreaded network client.

Java SE 8 Programming 16 - 17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Applying the Fork-Join framework will always result in a
performance benefit.

a. True

b. False

Java SE 8 Programming 16 - 18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Parallel Streams

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Objectives

After completing this lesson, you should be able to:

• Review the key characteristics of streams

• Contrast old style loop operations with streams

• Describe how to make a stream pipeline execute in parallel

• List the key assumptions needed to use a parallel pipeline

• Define reduction

• Describe why reduction requires an associative function

• Calculate a value using reduce

• Describe the process for decomposing and then merging
work

• List the key performance considerations for parallel
streams

Java SE 8 Programming 17 - 2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Streams Review

• Pipeline
– Multiple streams passing data along

– Operations can be Lazy

– Intermediate, Terminal, and Short-Circuit Terminal
Operations

• Stream characteristics
– Immutable

– Once elements are consumed they are no longer available
from the stream.

– Can be sequential (default) or parallel

Java SE 8 Programming 17 - 3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Old Style Collection Processing

15 double sum = 0;

16

17 for(Employee e:eList){

18 if(e.getState().equals("CO") &&

19 e.getRole().equals(Role.EXECUTIVE)){

20 e.printSummary();

21 sum += e.getSalary();

22 }

23 }

24

25 System.out.printf("Total CO Executive Pay:
$%,9.2f %n", sum);

There are a couple of key points that can be made about the above code.

• All elements in the collections must be iterated through every time.

• The code is more about "how" information is obtained and less about "what" the code is
trying to accomplish.

• A mutator must be added to the loop to calculate the total.

• There is no easy way to parallelize this code.

Java SE 8 Programming 17 - 4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

New Style Collection Processing

15 double result = eList.stream()

16 .filter(e -> e.getState().equals("CO"))

17 .filter(e -> e.getRole().equals(Role.EXECUTIVE))

18 .peek(e -> e.printSummary())

19 .mapToDouble(e -> e.getSalary())

20 .sum();

21

22 System.out.printf("Total CO Executive Pay: $%,9.2f
%n", result);

• What are the advantages?
– Code reads like a problem.

– Acts on the data set

– Operations can be lazy.

– Operations can be serial or parallel.

There are also some key points worth pointing out for this piece of code as well.

• The code reads much more like a problem statement.

• No mutator is needed to get the final result.

• Using this approach provides more opportunity for lazy optimizations.

• This code can easily be parallelized.

Java SE 8 Programming 17 - 5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Stream Pipeline: Another Look

13 public static void main(String[] args) {

14

15 List<Employee> eList = Employee.createShortList();

16

17 Stream<Employee> s1 = eList.stream();

18

19 Stream<Employee> s2 = s1.filter(

20 e -> e.getState().equals("CO"));

21

22 Stream<Employee> s3 = s2.filter(

23 e -> e.getRole().equals(Role.EXECUTIVE));

24 Stream<Employee> s4 = s3.peek(e -> e.printSummary());

25 DoubleStream s5 = s4.mapToDouble(e -> e.getSalary());

26 double result = s5.sum();

27

28 System.out.printf("Total CO Executive Pay: $%,9.2f %n",
result);

29 }

So far all the examples have used lambda expressions and stream pipelines to perform the
tasks. In the above example, the Stream class is used with regular Java statements to
perform the same steps as those found in a pipeline. Even though the approach is possible, a
stream pipeline seems like a much better solution.

Java SE 8 Programming 17 - 6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Styles Compared

Imperative Programming

• Code deals with individual
data items.

• Focused on how

• Code does not read like a
problem.

• Steps mashed together

• Leaks extraneous details

• Inherently sequential

Streams

• Code deals with data set.

• Focused on what

• Code reads like a
problem.

• Well-factored

• No "garbage variables"
(Temp variables leaked
into scope)

• Code can be sequential or
parallel.

Java SE 8 Programming 17 - 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Parallel Stream

• May provide better performance
– Many chips and cores per machine

– GPUs

• Map/Reduce in the small

• Fork/join is great, but too low level
– A lot of boilerplate code

– Stream uses fork/join under the hood

• Many factors affect performance
– Data size, decomposition, packing, number of cores

• Unfortunately, not a magic bullet
– Parallel is not always faster

Making a stream run in parallel is pretty easy. Just call the parallelStream or parallel
method in the stream. With that call, when the stream executes it uses all the processing
cores available to the current JVM to perform the task.

The fork/join framework is used to break the work into smaller tasks, execute each task, and
then recombine the results. But as you will see, much less code is needed to do this with
streams than would be necessary if fork/join was coded by hand.

Remember, parallel is not always faster. For certain types of tasks, serial processing will
produce better results.

Java SE 8 Programming 17 - 8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Using Parallel Streams: Collection

• Call from a Collection

15 double result = eList.parallelStream()

16 .filter(e -> e.getState().equals("CO"))

17 .filter(e ->
e.getRole().equals(Role.EXECUTIVE))

18 .peek(e -> e.printSummary())

19 .mapToDouble(e -> e.getSalary())

20 .sum();

21

22 System.out.printf("Total CO Executive Pay:
$%,9.2f %n", result);

This is an example of using the parallelStream method to make the stream pipeline
parallel.

Java SE 8 Programming 17 - 9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Using Parallel Streams: From a Stream

27 result = eList.stream()

28 .filter(e -> e.getState().equals("CO"))

29 .filter(e -> e.getRole().equals(Role.EXECUTIVE))

30 .peek(e -> e.printSummary())

31 .mapToDouble(e -> e.getSalary())

32 .parallel()

33 .sum();

34

35 System.out.printf("Total CO Executive Pay: $%,9.2f

%n", result);

• Specify with .parallel or .sequential (default is
sequential)

• Choice applies to entire pipeline.
– Last call wins

• Once again, the API doc is your friend.

Java SE 8 Programming 17 - 10

This example uses the parallel method to make the stream pipeline parallel. Both the
sequential and parallel methods may be called in a pipeline. Whichever method is
called last, will be applied to the stream.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Pipelines Fine Print

• Stream pipelines are like Builders.
– Add a bunch of intermediate operations, and then execute

– Cannot "branch" or "reuse" pipeline

• Do not modify the source during a query.

• Operation parameters must be stateless.
– Do not access any state that might change.

– This enables correct operation sequentially or in
parallel.

• Best to banish side effects completely.

Your data should be immutable or read-only when used with stream pipelines. No changes to
state should take place during a pipeline.

Java SE 8 Programming 17 - 11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Embrace Statelessness

17 List<Employee> newList02 = new ArrayList<>();

…

23 newList02 = eList.parallelStream() // Good Parallel

24 .filter(e -> e.getDept().equals("Eng"))

25 .collect(Collectors.toList());

• Mutate the stateless way
– The above is preferable.

– It is designed to parallelize.

If you want to save the results after a pipeline completes, use the collect method and
Collectors class as shown in the example. This method parallelizes well and treats the
data in a stateless way.

Java SE 8 Programming 17 - 12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Avoid Statefulness

15 List<Employee> eList =
Employee.createShortList();

16 List<Employee> newList01 = new ArrayList<>();

17 List<Employee> newList02 = new ArrayList<>();

18

19 eList.parallelStream() // Not Parallel. Bad.

20 .filter(e -> e.getDept().equals("Eng"))

21 .forEach(e -> newList01.add(e));

• Temptation is to do the above.
– Do not do this. It does not parallelize.

Stream pipeline results may be nondeterministic or incorrect if the behavioral parameters to
the stream operations are stateful. A stateful lambda is one whose result depends on any
state which might change during the execution of the stream pipeline.

Note: Do not write code like that shown in this example.

Java SE 8 Programming 17 - 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Streams Are Deterministic for Most Part

14 List<Employee> eList = Employee.createShortList();

15

16 double r1 = eList.stream()

17 .filter(e -> e.getState().equals("CO"))

18 .mapToDouble(Employee::getSalary)

19 .sequential().sum();

20

21 double r2 = eList.stream()

22 .filter(e -> e.getState().equals("CO"))

23 .mapToDouble(Employee::getSalary)

24 .parallel().sum();

25

26 System.out.println("The same: " + (r1 == r2));

• Will the result be the same?

A deterministic algorithm is an algorithm which, given a particular input, will always produce
the same output. The sum method is a great example as the order in which elements are
combined does not matter. The result will be the same irrespective of the order elements are
added.

Java SE 8 Programming 17 - 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

14 List<Employee> eList = Employee.createShortList();

15

16 Optional<Employee> e1 = eList.stream()

17 .filter(e -> e.getRole().equals(Role.EXECUTIVE))

18 .sequential().findAny();

19

20 Optional<Employee> e2 = eList.stream()

21 .filter(e -> e.getRole().equals(Role.EXECUTIVE))

22 .parallel().findAny();

23

24 System.out.println("The same: " +

25 e1.get().getEmail().equals(e2.get().getEmail()));

• Will the result be the same?
– In this case, maybe not.

Some Are Not Deterministic

The larger the data set, the more likely the two code blocks will produce a different result. The
parallel stream does not search the data sequentially. Consequently, it is possible it will find a
different element that meets the criteria first.

Java SE 8 Programming 17 - 15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Reduction

• Reduction
– An operation that takes a sequence of input elements and

combines them into a single summary result by repeated
application of a combining operation.

– Implemented with the reduce() method

• Example: sum is a reduction with a base value of 0 and a
combining function of +.
– ((((0 + a1) + a2) + ...) + an)

– .sum() is equivalent to reduce (0, (a, b) -> a +b)

– (0, (sum, element) -> sum + element)

Reduction is an operation that takes a sequence of input elements and combines them into a
single summary result by repeated application of a combining operation. The sum method for
the Stream class is an application of reduction.

Java SE 8 Programming 17 - 16

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Reduction Fine Print

• If the combining function is associative, reduction
parallelizes cleanly
– Associative means the order does not matter.

– The result is the same irrespective of the order used to
combine elements.

• Examples of: sum, min, max, average, count
– .count() is equivalent to .map(e -> 1).sum().

• Warning: If you pass a nonassociative function to
reduce, you will get the wrong answer. The function must
be associative.

As the text above points out, a reduction can only be preformed on an associate function. In
effect, a function where order does not matter. If the function is not associative, you will get
the wrong result.

Java SE 8 Programming 17 - 17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Reduction: Example

18 int r2 = IntStream.rangeClosed(1, 5).parallel()

19 .reduce(0, (sum, element) -> sum + element);

20

21 System.out.println("Result: " + r2);

0 1 2 3 4 5
Sum Elements

Note that the integer value of 0 is passed into the reduce method. This is called the identity
value. It represents the starting value for the reduce function and the default return value if
there are no members in the reduction.

Java SE 8 Programming 17 - 18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Reduction: Example

18 int r2 = IntStream.rangeClosed(1, 5).parallel()

19 .reduce(0, (sum, element) -> sum + element);

20

21 System.out.println("Result: " + r2);

1 2 3 4 5
Sum Elements

Java SE 8 Programming 17 - 19

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Reduction: Example

18 int r2 = IntStream.rangeClosed(1, 5).parallel()

19 .reduce(0, (sum, element) -> sum + element);

20

21 System.out.println("Result: " + r2);

3 3 4 5
Sum Elements

Java SE 8 Programming 17 - 20

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Reduction: Example

18 int r2 = IntStream.rangeClosed(1, 5).parallel()

19 .reduce(0, (sum, element) -> sum + element);

20

21 System.out.println("Result: " + r2);

6 4 5
Sum Elements

Java SE 8 Programming 17 - 21

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Reduction: Example

18 int r2 = IntStream.rangeClosed(1, 5).parallel()

19 .reduce(0, (sum, element) -> sum + element);

20

21 System.out.println("Result: " + r2);

10 5
Sum Elements

Java SE 8 Programming 17 - 22

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Reduction: Example

18 int r2 = IntStream.rangeClosed(1, 5).parallel()

19 .reduce(0, (sum, element) -> sum + element);

20

21 System.out.println("Result: " + r2);

15
Sum Elements

Java SE 8 Programming 17 - 23

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

A Look Under the Hood

• Pipeline decomposed into subpipelines.
– Each subpipeline produces a subresult.

– Subresults combined into final result.

eList.stream().map(…).sum()

eList.stream().map(…).sum()

eList.stream().map(…).sum()

eList.stream().map(…).sum()

eList.stream().map(…).sum()

result

This picture shows how the sum is first decomposed into smaller steps. The results are then
combined to produce a result.

Java SE 8 Programming 17 - 24

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Illustrating Parallel Execution

18 int r2 = IntStream.rangeClosed(1, 8).parallel()

19 .reduce(0, (sum, element) -> sum + element);

1 2 3 4 5 6 7 8

In the steps that follow, the data set above is summed. The steps of decomposition and then
combination are shown in detail. Note that for this operation, the order of operations does not
matter.

Java SE 8 Programming 17 - 25

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Illustrating Parallel Execution

18 int r2 = IntStream.rangeClosed(1, 8).parallel()

19 .reduce(0, (sum, element) -> sum + element);

1 2 3 4 5 6 7 8

Java SE 8 Programming 17 - 26

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Illustrating Parallel Execution

18 int r2 = IntStream.rangeClosed(1, 8).parallel()

19 .reduce(0, (sum, element) -> sum + element);

1 2 3 4 5 6 7 8

Java SE 8 Programming 17 - 27

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Illustrating Parallel Execution

18 int r2 = IntStream.rangeClosed(1, 8).parallel()

19 .reduce(0, (sum, element) -> sum + element);

((1+ 2) (3 + 4)) ((5 + 6) (7 + 8))

Java SE 8 Programming 17 - 28

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Illustrating Parallel Execution

18 int r2 = IntStream.rangeClosed(1, 8).parallel()

19 .reduce(0, (sum, element) -> sum + element);

(1+ 2) 7 (5 + 6) (7 + 8)

Java SE 8 Programming 17 - 29

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Illustrating Parallel Execution

18 int r2 = IntStream.rangeClosed(1, 8).parallel()

19 .reduce(0, (sum, element) -> sum + element);

(1+ 2) 7 11 (7 + 8)

Java SE 8 Programming 17 - 30

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Illustrating Parallel Execution

18 int r2 = IntStream.rangeClosed(1, 8).parallel()

19 .reduce(0, (sum, element) -> sum + element);

3 7 11 (7 + 8)

Java SE 8 Programming 17 - 31

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Illustrating Parallel Execution

18 int r2 = IntStream.rangeClosed(1, 8).parallel()

19 .reduce(0, (sum, element) -> sum + element);

10

11 (7 + 8)

Java SE 8 Programming 17 - 32

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Illustrating Parallel Execution

18 int r2 = IntStream.rangeClosed(1, 8).parallel()

19 .reduce(0, (sum, element) -> sum + element);

10

11 15

Java SE 8 Programming 17 - 33

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Illustrating Parallel Execution

18 int r2 = IntStream.rangeClosed(1, 8).parallel()

19 .reduce(0, (sum, element) -> sum + element);

10 26

Java SE 8 Programming 17 - 34

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Illustrating Parallel Execution

18 int r2 = IntStream.rangeClosed(1, 8).parallel()

19 .reduce(0, (sum, element) -> sum + element);

36

Java SE 8 Programming 17 - 35

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Performance

• Do not assume parallel is always faster.
– Parallel not always the right solution.

– Sometimes parallel is slower than sequential.

• Qualitative considerations
– Does the stream source decompose well?

– Do terminal operations have a cheap or expensive merge
operation?

– What are stream characteristics?
— Filters change size for example.

• Primitive streams provided for performance
– Boxing/Unboxing negatively impacts performance.

As with any code, test and verify that a particular approach works as intended. As stated
previously, associative functions decompose well and make good candidates for parallel
processing. But operations that do not meet this criteria may perform better when processed
sequentially.

Java SE 8 Programming 17 - 36

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

A Simple Performance Model

N = Size of the source data set

Q = Cost per element through the pipeline

N * Q ~= Cost of the pipeline

• Larger N*Q -> Higher change of good parallel performance

• Easier to know N than Q

• You can reason qualitatively about Q
– Simple pipeline example

— N > 10K. Q=1

— Reduction using sum

– Complex pipelines might
— Contain filters

— Contain limit operation
— Complex reduction using groupingBy()

As the slide points out, the larger the data set, the more likely parallel processing is going to
show an improvement in performance. Some other observations:

• A system needs to have a least four cores available to the JVM before you will see any
substantial difference in performance.

• As a general guideline, a data set should contain more than 10,000 items before
showing a difference in performance.

• Any operations or complex operations that cause threads to block will have a negative
impact on performance.

Java SE 8 Programming 17 - 37

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Summary

In this lesson, you should have learned how to:

• Review the key characteristics of streams

• Contrast old style loop operations with streams

• Describe how to make a stream pipeline execute in parallel

• List the key assumptions needed to use a parallel pipeline

• Define reduction

• Describe why reduction requires an associative function

• Calculate a value using reduce

• Describe the process for decomposing and then merging
work

• List the key performance considerations for parallel
streams

Java SE 8 Programming 17 - 38

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practice

• Practice 17-1: Calculate Total Sales Without a Pipeline

• Practice 17-2: Calculate Sales Totals Using Parallel
Streams

• Practice 17-3: Calculate Sales Totals Using Parallel
Streams and Reduce

Java SE 8 Programming 17 - 39

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Building Database Applications with JDBC

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Objectives

After completing this lesson, you should be able to:

• Define the layout of the JDBC API

• Connect to a database by using a JDBC driver

• Submit queries and get results from the database

• Specify JDBC driver information externally

• Perform CRUD operations by using the JDBC API

Java SE 8 Programming 18 - 2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Using the JDBC API

1

2

java.sql class and interfaces Vendor-Specific JAR File

DriverManager

<interface>
Connection

<interface>
Statement

<interface>
ResultSet

VendorStatement

Vendor
Connection

VendorResultSet3

The JDBC API is made up of some concrete classes, such as Date, Time, and
SQLException, and a set of interfaces that are implemented in a driver class that is provided
by the database vendor.

Because the implementation is a valid instance of the interface method signature, after the
database vendor’s Driver classes are loaded, you can access them by following the sequence
shown in the slide:

1. Use the DriverManager class to obtain a reference to a Connection object by using
the getConnection method. The typical signature of this method is getConnection
(url, name, password), where url is the JDBC URL, and name and password
are strings that the database accepts for a connection.

2. Use the Connection object (implemented by some class that the vendor provided) to
obtain a reference to a Statement object through the createStatement method.
The typical signature for this method is createStatement () with no arguments.

3. Use the Statement object to obtain an instance of a ResultSet through an
executeQuery (query) method. This method typically accepts a string (query),
where query is a static string.

Java SE 8 Programming 18 - 3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Using a Vendor’s Driver Class

The DriverManager class is used to get an instance of a
Connection object by using the JDBC driver named in the
JDBC URL:
String url = "jdbc:derby://localhost:1527/EmployeeDB";

Connection con = DriverManager.getConnection (url);

• The URL syntax for a JDBC driver is:
jdbc:<driver>:[subsubprotocol:][databaseName][;attribute=value]

• Each vendor can implement its own subprotocol.

• The URL syntax for an Oracle Thin driver is:
jdbc:oracle:thin:@//[HOST][:PORT]/SERVICE

Example:
jdbc:oracle:thin:@//myhost:1521/orcl

DriverManager

Any JDBC 4.0 drivers that are found in the class path are automatically loaded. The
DriverManager.getConnection method will attempt to load the driver class by looking at
the META_INF/services/java.sql.Driver file. This file contains the name of the JDBC
driver’s implementation of java.sql.Driver. For example, the META-
INF/services/java.sql.driver file in derbyclient.jar contains
org.apache.derby.jdbc.ClientDriver.

Drivers prior to JDBC 4.0 must be loaded manually by using:

try {

java.lang.Class.forName("<fully qualified path of the driver>");

} catch (ClassNotfoundException c) {

}

Driver classes can also be passed to the interpreter on the command line:

java –djdbc.drivers=<fully qualified path to the driver> <class to
run>

Java SE 8 Programming 18 - 4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Key JDBC API Components

Each vendor’s JDBC driver class also implements the key API
classes that you will use to connect to the database, execute
queries, and manipulate data:
• java.sql.Connection: A connection that represents

the session between your Java application and the
database
Connection con = DriverManager.getConnection(url,

username, password);

• java.sql.Statement: An object used to execute a
static SQL statement and return the result
Statement stmt = con.createStatement();

• java.sql.ResultSet: An object representing a
database result set
String query = "SELECT * FROM Employee";

ResultSet rs = stmt.executeQuery(query);

Connections, Statements, and ResultSets

The main advantage of the JDBC API is that it provides a flexible and portable way to
communicate with a database.

The JDBC driver that is provided by a database vendor implements each of the following Java
interfaces. Your Java code can use the interface knowing that the database vendor provided
the implementation of each of the methods in the interface:

• Connection: Is an interface that provides a session with the database. While the
connection object is open, you can access the database, create statements, get results,
and manipulate the database. When you close a connection, the access to the database
is terminated and the open connection closed.

• Statement: Is an interface that provides a class for executing SQL statements and
returning the results. The Statement interface is for static SQL queries. There are two
other subinterfaces: PreparedStatement, which extends Statement and
CallableStatement, which extends PreparedStatement.

• ResultSet: Is an interface that manages the resulting data returned from a
Statement

Note: SQL commands and keywords are not case-sensitive—that is, you can use SELECT or
Select. SQL table and column names (identifiers) can be case-sensitive or not case-
sensitive, depending upon the database. SQL identifiers are not case-sensitive in the Derby
database (unless delimited). Java SE 8 Programming 18 - 5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Writing Queries and Getting Results

To execute SQL queries with JDBC, you must create a SQL
query wrapper object, an instance of the Statement object.
Statement stmt = con.createStatement();

• Use the Statement instance to execute a SQL query:
ResultSet rs = stmt.executeQuery (query);

• Note that there are three Statement execute methods:

Method Returns Used for

executeQuery(sqlString) ResultSet SELECT statement

executeUpdate(sqlString) int (rows
affected)

INSERT, UPDATE,
DELETE, or a DDL

execute(sqlString) boolean (true if
there was a
ResultSet)

Any SQL command
or commands

A SQL statement is executed against a database using an instance of a Statement object.
The Statement object is a wrapper object for a query. A Statement object is obtained
through a Connection object—the database connection. So it makes sense that from a
Connection, you get an object that you can use to write statements to the database.

The Statement interface provides three methods for creating SQL queries and returning a
result. Which one you use depends upon the type of SQL statement you want to use:

• executeQuery(sqlString): For a SELECT statement, returns a ResultSet object

• executeUpdate(sqlString): For INSERT, UPDATE, and DELETE statements,
returns an int (number of rows affected), or 0 when the statement is a Data Definition
Language (DDL) statement, such as CREATE TABLE.

• execute(sqlString): For any SQL statement, returns a boolean indicating if a
ResultSet was returned. Multiple SQL statements can be executed with execute.

Java SE 8 Programming 18 - 6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Using a ResultSet Object

String query = "SELECT * FROM Employee";

ResultSet rs = stmt.executeQuery(query);

110 Troy Hammer 1965-03-31 102109.15

123 Michael Walton 1986-08-25 93400.20

201 Thomas Fitzpatrick 1961-09-22 75123.45

101 Abhijit Gopali 1956-06-01 70000.00

ResultSet cursor

rs.next()

rs.next()

rs.next()

rs.next()

rs.next() null

The last next() method invocation returns
false, and the rs instance is now null.

The first next() method invocation returns
true, and rs points to the first row of data.

ResultSet Objects
• ResultSet maintains a cursor to the returned rows. The cursor is initially pointing

before the first row.

• The ResultSet.next() method is called to position the cursor in the next row.

• The default ResultSet is not updatable and has a cursor that points only forward.

• It is possible to produce ResultSet objects that are scrollable and/or updatable. The
following code fragment, in which con is a valid Connection object, illustrates how to
make a result set that is scrollable and insensitive to updates by others, and that is
updatable:

Statement stmt
= con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT a, b FROM TABLE2");

Note: Not all databases support scrollable result sets.

ResultSet has accessor methods to read the contents of each column returned in a row.
ResultSet has a getter method for each type.

Java SE 8 Programming 18 - 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

CRUD Operations Using JDBC API: Retrieve

1 package com.example.text;

2

3 import java.sql.DriverManager;

4 import java.sql.ResultSet;

5 import java.sql.SQLException;

6 import java.util.Date;

7

8 public class SimpleJDBCTest {

9

10 public static void main(String[] args) {

11 String url = "jdbc:derby://localhost:1527/EmployeeDB";

12 String username = "public";

13 String password = "tiger";

14 String query = "SELECT * FROM Employee";

15 try (Connection con =

16 DriverManager.getConnection (url, username, password);

17 Statement stmt = con.createStatement ();

18 ResultSet rs = stmt.executeQuery (query)) {

The hard-coded JDBC
URL, username, and
password are just for
this simple example.

CRUD (Create, Retrieve, Update, and Delete) operations are equivalent to the INSERT,
SELECT, UPDATE, and DELETE statements in SQL.

In the following slide, you see a complete example of a JDBC application, a simple one that
reads all the rows from an Employee database and returns the results as strings to the
console.

• Lines 15–16: Use a try-with-resources statement to get an instance of an object that
implements the Connection interface.

• Line 17: Use the connection object to get an instance of an object that implements the
Statement interface from the Connection object.

• Line 18: Create a ResultSet by executing the string query using the Statement
object.

Note: Hard coding the JDBC URL, username, and password makes an application less
portable. Instead, consider using java.io.Console to read the username and password
and/or some type of authentication service.

Java SE 8 Programming 18 - 8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

CRUD Operations Using JDBC: Retrieve

19 while (rs.next()) {

20 int empID = rs.getInt("ID");

21 String first = rs.getString("FirstName");

22 String last = rs.getString("LastName");

23 Date birthDate = rs.getDate("BirthDate");

24 float salary = rs.getFloat("Salary");

25 System.out.println("Employee ID: " + empID + "\n"

26 + "Employee Name: " + first + " " + last + "\n"

27 + "Birth Date: " + birthDate + "\n"

28 + "Salary: " + salary);

29 } // end of while

30 } catch (SQLException e) {

31 System.out.println("SQL Exception: " + e);

32 } // end of try-with-resources

33 }

34 }

Loop through all of the
rows in the ResultSet.

• Lines 20–24: Get the results of each of the data fields in each row read from the
Employee table.

• Lines 25–28: Print the resulting data fields to the system console.

• Line 30: SQLException: This class extends Exception thrown by the
DriverManager, Statement, and ResultSet methods.

• Line 32: This is the closing brace for the try-with-resources statement on line 15.

This example is from the SimpleJDBCExample project.

Output:

run:

Employee ID: 110

Employee Name: Troy Hammer

Birth Date: 1965-03-31

Salary: 102109.15

Java SE 8 Programming 18 - 9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

CRUD Operations Using JDBC API: Create

Query to insert a row in
the Employee.

1. public class InsertJDBCExample {

2. public static void main(String[] args) {

3. // Create the "url"

4. // assume database server is running on the localhost

5. String url = "jdbc:derby://localhost:1527/EmployeeDB";

6. String username = "scott";

7. String password = "tiger";

8. try (Connection con = DriverManager.getConnection(url, username,
password))

9. {

10. Statement stmt = con.createStatement();

11. String query = "INSERT INTO Employee VALUES (500, ‘Jill',
'Murray','1950-09-21', 150000)";

12. if (stmt.executeUpdate(query) > 0) {

13. System.out.println("A new Employee record is added");

14. }

15. String query1=“select * from Employee”;

16. ResultSet rs = stmt.executeUpdate(query1);

17. //code to display the rows

18. }

This slide demonstrates the insert operation. An employee record is added to the Employee
table and the content of the Employee table after the insert operation is displayed in the
output console.

Lines 10–13: Create a query to insert an employee record and execute the query.

Lines 15–17: Print the resulting data fields to the system console.

Java SE 8 Programming 18 - 10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

CRUD Operations Using JDBC API: Update

1. public class UpdateJDBCExample {

2. public static void main(String[] args) {

3. // Create the "url"

4. // assume database server is running on the localhost

5. String url = "jdbc:derby://localhost:1527/EmployeeDB";

6. String username = "scott";

7. String password = "tiger“;

8. try (Connection con = DriverManager.getConnection(url, username,
password)) {

9. Statement stmt = con.createStatement();

10. query = "Update Employee SET salary= 200000 where id=500";

11. if (stmt.executeUpdate(query) > 0) {

12. System.out.println("An existing employee record was updated
successfully!");

13. }

14. String query1="select * from Employee";

15. ResultSet rs = stmt.executeQuery(query1);

16. //code to display the records//

17.}

This slide demonstrates the update operation. An existing employee record is updated and
the content of the Employee table after the update operation is displayed in the output
console.

Lines 9–12: Create a query to update an employee record with ID 500 and execute the
query.

Lines 14–16: Print the resulting data fields to the system console.

Java SE 8 Programming 18 - 11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

CRUD Operations Using JDBC API: Delete

1.public class DeleteJDBCExample {

2. public static void main(String[] args) {

3. String url = "jdbc:derby://localhost:1527/EmployeeDB";

4. String username = "scott";

5. String password = "tiger”;

6. try (Connection con = DriverManager.getConnection(url, username,
password)) {

7. Statement stmt = con.createStatement();

8. String query = "DELETE FROM Employee where id=500";

9. if (stmt.executeUpdate(query) > 0) {

10. System.out.println("An employee record was deleted successfully");

11. }

12. String query1="select * from Employee";

13. ResultSet rs = stmt.executeQuery(query1);

This slide demonstrates the delete operation. An existing employee record is deleted and the
content of the Employee table after the delete operation is displayed in the output console.

Lines 7–10: Create a query to delete an employee record with ID 500 and execute the query.

Lines 12–13: Print the resulting data fields to the system console.

Java SE 8 Programming 18 - 12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

SQLException Class

SQLException can be used to report details about resulting
database errors. To report all the exceptions thrown, you can
iterate through the SQLExceptions thrown:
1 catch(SQLException ex) {

2 while(ex != null) {

3 System.out.println("SQLState: " + ex.getSQLState());

4 System.out.println("Error Code:" + ex.getErrorCode());

5 System.out.println("Message: " + ex.getMessage());

6 Throwable t = ex.getCause();

7 while(t != null) {

8 System.out.println("Cause:" + t);

9 t = t.getCause();

10 }

11 ex = ex.getNextException();

12 }

13 }

Vendor-dependent state
codes, error codes, and

messages

• A SQLException is thrown from errors that occur in one of the following types of
actions: driver methods, methods that access the database, or attempts to get a
connection to the database.

• The SQLException class also implements Iterable. Exceptions can be chained
together and returned as a single object.

• A SQLException is thrown if the database connection cannot be made due to incorrect
username or password information or if the database is offline.

• SQLException can also result by attempting to access a column name that is not part
of the SQL query.

• SQLException is also subclassed, providing granularity of the actual exception thrown.

Note: SQLState and SQLErrorCode values are database dependent. For Derby, the
SQLState values are defined at:

http://download.oracle.com/javadb/10.8.1.2/ref/rrefexcept71493.html

Java SE 8 Programming 18 - 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Closing JDBC Objects

Connection

Statement Statement

ResultSet ResultSet

close() Connection

Closes Statements

Invalidates
ResultSets

Resources not
released until

next GC

One Way Better Way

close()

Resources
released

close()

close()

Call close explicitly or
in try-with-resources

• Closing a Connection object will automatically close any Statement objects created
with this Connection.

• Closing a Statement object will close and invalidate any instances of ResultSet
created by the Statement object.

• Resources held by the ResultSet may not be released until garbage is collected.
Therefore, it is a good practice to explicitly close ResultSet objects when they are no
longer needed.

• When the close() method on ResultSet is executed, external resources are
released.

• ResultSet objects are also implicitly closed when an associated Statement object is
re-executed.

In summary, it is a good practice to explicitly close JDBC Connection, Statement, and
ResultSet objects when you no longer need them.

Note: A connection with the database can be an expensive operation. It is a good practice to
either maintain Connection objects for as long as possible, or use a connection pool.

Java SE 8 Programming 18 - 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

try-with-resources Construct

Given the following try-with-resources statement:
try (Connection con =

DriverManager.getConnection(url, username, password);

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery (query)){

• The compiler checks to see that the object inside the
parentheses implements java.lang.AutoCloseable.
– This interface includes one method: void close().

• The close() method is automatically called at the end of
the try block in the proper order (last declaration to first).

• Multiple closeable resources can be included in the try
block, separated by semicolons.

One of the features is the try-with-resources statement. This is an enhancement that will
automatically close open resources.

With JDBC 4.1, the JDBC API classes including ResultSet, Connection, and
Statement, implement java.lang.AutoCloseable. The close() method of the
ResultSet, Statement, and Connection objects will be called in order in this example.

Java SE 8 Programming 18 - 15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Using PreparedStatement

PreparedStatement is a subclass of Statement that allows
you to pass arguments to a precompiled SQL statement.

double value = 100_000.00;

String query = "SELECT * FROM Employee WHERE Salary > ?";

PreparedStatement pStmt = con.prepareStatement(query);

pStmt.setDouble(1, value);

ResultSet rs = pStmt.executeQuery();

• In this code fragment, a prepared statement returns all
columns of all rows whose salary is greater than $100,000.

• PreparedStatement is useful when you want to execute
a SQL statement multiple times.

Substitutes value for the first
parameter in the prepared statement.

Parameter for substitution.

The PreparedStatement provides two additional benefits:

• Faster execution

• Parameterized SQL Statements

The SQL statement in the example in the slide is precompiled and stored in the
PreparedStatement object. This statement can be used efficiently to execute this
statement multiple times. This example could be in a loop, looking at different values.

Prepared statements can also be used to prevent SQL injection attacks. For example, where
a user is allowed to enter a string and that string is executed as a part of a SQL statement, it
enables the user to alter the database in unintended ways (such as granting the user
permissions).

Note: PreparedStatement setXXXX methods index parameters from 1, and not 0. The first
parameter in a prepared statement is 1, the second parameter is 2, and so on.

Java SE 8 Programming 18 - 16

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Using PreparedStatement: Setting Parameters

In general, there is a setXXX method for each type in the Java
programming language.

setXXX arguments:

• The first argument indicates which question mark
placeholder is to be set.

• The second argument indicates the replacement value.

For example:

pStmt.setInt(1, 175);
pStmt.setString(2,"Charles");

Java SE 8 Programming 18 - 17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Executing PreparedStatement

In general, there is a setXXX method for each type in the Java
programming language.

setXXX arguments:
• The first argument indicates which question mark

placeholder is to be set.
• The second argument indicates the replacement value.

For example:

pStmt.setInt(1, 175);
pStmt.setString(2,"Charles");

Java SE 8 Programming 18 - 18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

PreparedStatement:Using a Loop to Set Values

PreparedStatement updateEmp;

String updateString = "update Employee"

+ "set SALARY= ? where EMP_NAME like ?";

updateEmp = con.prepareStatement(updateString);

int[] salary = {1750, 1500, 6000, 1550, 9050};

String[] names = {"David", "Tom", "Nick“,
"Harry", "Mark"};

for(int i:names)

{

updateEmp.setInt(1, salary[i]);

updateEmp.setString(2, names[i]);

updateEmp.executeUpdate();

}

When using a PreparedStatement you can make coding easier by using a for loop or a
while loop to set values for input parameters.

The code snippet in the slide demonstrates using a for loop to set the values for input
parameters.

A PreparedStatement object is created and a for loop executes five times. Each time
through the loop it sets a new value and executes the SQL statement and updates salaries for
five different employees.

Java SE 8 Programming 18 - 19

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Using CallableStatement

A CallableStatement allows non-SQL statements (such as
stored procedures) to be executed against the database.
CallableStatement cStmt

= con.prepareCall("{CALL EmplAgeCount (?, ?)}");

int age = 50;

cStmt.setInt (1, age);

ResultSet rs = cStmt.executeQuery();

cStmt.registerOutParameter(2, Types.INTEGER);

boolean result = cStmt.execute();

int count = cStmt.getInt(2);

System.out.println("There are " + count +

" Employees over the age of " + age);

• Stored procedures are executed on the database.

The IN parameter is passed in
to the stored procedure.

The OUT parameter is returned
from the stored procedure.

Stored Procedure

A stored procedure is a group of SQL statements that form a logical unit and perform a
particular task. They are used to encapsulate a set of operations or queries to execute on a
database server. Stored procedures are supported by most DBMSs, but there is a fair amount
of variation in their syntax and capabilities.

Calling a Stored Procedure from JDBC

The first step is to create a CallableStatement object. As with Statement and
PreparedStatement objects, this is done with an open Connection object. A
CallableStatement object contains a call to a stored procedure; it does not contain the stored
procedure itself.

Java SE 8 Programming 18 - 20

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Summary

In this lesson, you should have learned how to:

• Define the layout of the JDBC API

• Connect to a database by using a JDBC driver

• Submit queries and get results from the database

• Specify JDBC driver information externally

• Perform CRUD operations by using the JDBC API

Java SE 8 Programming 18 - 21

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practice 18-1 Overview: Working with the
Derby Database and JDBC

This practice covers the following topics:

• Starting the JavaDB (Derby) database from within
NetBeans IDE

• Populating the database with data (the Employee table)

• Running SQL queries to look at the data

• Compiling and running the sample JDBC application

In this practice, you will start the database from within NetBeans, populate the database with
data, run some SQL queries, and compile and run a simple application that returns the rows
of the Employee database table.

Java SE 8 Programming 18 - 22

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Which Statement method executes a SQL statement and
returns the number of rows affected?
a. stmt.execute(query);

b. stmt.executeUpdate(query);

c. stmt.executeQuery(query);

d. stmt.query(query);

Java SE 8 Programming 18 - 23

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

When using a Statement to execute a query that returns only
one record, it is not necessary to use the ResultSet's
next() method.

a. True

b. False

Java SE 8 Programming 18 - 24

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Localization

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Objectives

After completing this lesson, you should be able to:

• Describe the advantages of localizing an application

• Define what a locale represents
• Read and set the locale by using the Locale object

• Create and read a Properties file

• Build a resource bundle for each locale

• Call a resource bundle from an application

• Change the locale for a resource bundle

Java SE 8 Programming 19 - 2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Why Localize?

The decision to create a version of an application for
international use often happens at the start of a development
project.

• Region- and language-aware software

• Dates, numbers, and currencies formatted for specific
countries

• Ability to plug in country-specific data without changing
code

Localization is the process of adapting software for a specific region or language by adding
locale-specific components and translating text.

In addition to language changes, culturally dependent elements, such as dates, numbers,
currencies, and so on must be translated.

The goal is to design for localization so that no coding changes are required.

Java SE 8 Programming 19 - 3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

A Sample Application

Localize a sample application:

• Text-based user interface

• Localize menus

• Display currency and date localizations

=== Localization App ===

1. Set to English

2. Set to French

3. Set to Chinese

4. Set to Russian

5. Show me the date

6. Show me the money!

q. Enter q to quit

Enter a command:

In the remainder of this lesson, this simple text-based user interface will be localized for
French, Simplified Chinese, and Russian. Enter the number indicated by the menu and that
menu option will be applied to the application. Enter q to exit the application.

Java SE 8 Programming 19 - 4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Locale

A Locale specifies a particular language and country:

• Language
– An alpha-2 or alpha-3 ISO 639 code

– “en” for English, “es” for Spanish

– Always uses lowercase

• Country
– Uses the ISO 3166 alpha-2 country code or UN M.49

numeric area code

– "US" for United States, "ES" for Spain

– Always uses uppercase

• See the Java Tutorials for details of all standards used.

In Java, a locale is specified by using two values: language and country. See the Java
Tutorial for standards used:
http://download.oracle.com/javase/tutorial/i18n/locale/create.html

Language Samples

• de: German

• en: English

• fr: French

• zh: Chinese

Country Samples

• DE: Germany

• US: United States

• FR: France

• CN: China

Java SE 8 Programming 19 - 5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Properties

• The java.util.Properties class is used to load and
save key-value pairs in Java.

• Can be stored in a simple text file:
hostName = www.example.com

userName = user

password = pass

• File name ends in .properties.

• File can be anywhere that compiler can find it.

The benefit of a properties file is the ability to set values for your application externally. The
properties file is typically read at the start of the application and is used for default values. But
the properties file can also be an integral part of a localization scheme, where you store the
values of menu labels and text for various languages that your application may support.

The convention for a properties file is <filename>.properties, but the file can have any
extension you want. The file can be located anywhere that the application can find it.

Java SE 8 Programming 19 - 6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Loading and Using a Properties File

1 public static void main(String[] args) {

2 Properties myProps = new Properties();

3 try {

4 FileInputStream fis = new FileInputStream("ServerInfo.properties");

5 myProps.load(fis);

6 } catch (IOException e) {

7 System.out.println("Error: " + e.getMessage());

8 }

9

10 // Print Values

11 System.out.println("Server: " + myProps.getProperty("hostName"));

12 System.out.println("User: " + myProps.getProperty("userName"));

13 System.out.println("Password: " + myProps.getProperty("password"));

14 }

In the code fragment, you create a Properties object. Then, using a try statement, you
open a file relative to the source files in your NetBeans project. When it is loaded, the name-
value pairs are available for use in your application.

Properties files enable you to easily inject configuration information or other application data
into the application.

Java SE 8 Programming 19 - 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Loading Properties from the Command Line

• Property information can also be passed on the command
line.

• Use the –D option to pass key-value pairs:
java –Dpropertyname=value –Dpropertyname=value myApp

• For example, pass one of the previous values:
java –Dusername=user myApp

• Get the Properties data from the System object:
String userName = System.getProperty("username");

Property information can also be passed on the command line. The advantage to passing
properties from the command line is simplicity. You do not have to open a file and read from
it. However, if you have more than a few parameters, a properties file is preferable.

Java SE 8 Programming 19 - 8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Resource Bundle

• The ResourceBundle class isolates locale-specific data:

– Returns key/value pairs stored separately
– Can be a class or a .properties file

• Steps to use:
– Create bundle files for each locale.

– Call a specific locale from your application.

Design for localization begins by designing the application so that all the text, sounds, and
images can be replaced at run time with the appropriate elements for the region and culture
desired. Resource bundles contain key-value pairs that can be hard-coded within a class or
located in a .properties file.

Java SE 8 Programming 19 - 9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Resource Bundle File

• Properties file contains a set of key-value pairs.
– Each key identifies a specific application component.

– Special file names use language and country codes.

• Default for sample application:
– Menu converted into resource bundle

MessageBundle.properties

menu1 = Set to English

menu2 = Set to French

menu3 = Set to Chinese

menu4 = Set to Russian

menu5 = Show the Date

menu6 = Show me the money!

menuq = Enter q to quit

The slide shows a sample resource bundle file for this application. Each menu option has
been converted into a name/value pair. This is the default file for the application. For
alternative languages, a special naming convention is used:

MessageBundle_xx_YY.properties

where xx is the language code and YY is the country code.

Java SE 8 Programming 19 - 10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Sample Resource Bundle Files

Samples for French and Chinese
MessagesBundle_fr_FR.properties

menu1 = Régler à l'anglais

menu2 = Régler au français

menu3 = Réglez chinoise

menu4 = Définir pour la Russie

menu5 = Afficher la date

menu6 = Montrez-moi l'argent!

menuq = Saisissez q pour quitter

MessagesBundle_zh_CN.properties

menu1 = 设置为英语

menu2 = 设置为法语

menu3 = 设置为中文

menu4 = 设置到俄罗斯

menu5 = 显示日期

menu6 = 显示我的钱！

menuq = 输入q退出

The slide shows the resource bundle files for French and Chinese. Note that the file names
include both language and country. The English menu item text has been replaced with
French and Chinese alternatives.

Java SE 8 Programming 19 - 11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Initializing the Sample Application

PrintWriter pw = new PrintWriter(System.out, true);

// More init code here

Locale usLocale = Locale.US;

Locale frLocale = Locale.FRANCE;

Locale zhLocale = new Locale("zh", "CN");

Locale ruLocale = new Locale("ru", "RU");

Locale currentLocale = Locale.getDefault();

ResourceBundle messages = ResourceBundle.getBundle("MessagesBundle",
currentLocale);

// more init code here

public static void main(String[] args){

SampleApp ui = new SampleApp();

ui.run();

}

With the resource bundles created, you simply need to load the bundles into the application.
The source code in the slide shows the steps. First, create a Locale object that specifies the
language and country. Then load the resource bundle by specifying the base file name for the
bundle and the current Locale.

Note that there are a couple of ways to define a Locale. The Locale class includes default
constants for some countries. If a constant is not available, you can use the language code
with the country code to define the location. Finally, you can use the getDefault() method
to get the default location.

Java SE 8 Programming 19 - 12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Sample Application: Main Loop

public void run(){
String line = "";
while (!(line.equals("q"))){

this.printMenu();
try { line = this.br.readLine(); }
catch (Exception e){ e.printStackTrace(); }

switch (line){
case "1": setEnglish(); break;
case "2": setFrench(); break;
case "3": setChinese(); break;
case "4": setRussian(); break;
case "5": showDate(); break;
case "6": showMoney(); break;

}
}

}

For this application, a run method contains the main loop. The loop runs until the letter “q” is
typed in as input. A string switch is used to perform an operation based on the number
entered. A simple call is made to each method to make locale changes and display a
formatted output.

Java SE 8 Programming 19 - 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

The printMenu Method

Instead of text, a resource bundle is used.
• messages is a resource bundle.

• A key is used to retrieve each menu item.
• Language is selected based on the Locale setting.

public void printMenu(){

pw.println("=== Localization App ===");

pw.println("1. " + messages.getString("menu1"));

pw.println("2. " + messages.getString("menu2"));

pw.println("3. " + messages.getString("menu3"));

pw.println("4. " + messages.getString("menu4"));

pw.println("5. " + messages.getString("menu5"));

pw.println("6. " + messages.getString("menu6"));

pw.println("q. " + messages.getString("menuq"));

System.out.print(messages.getString("menucommand")+" ");

}

Instead of printing text, the resource bundle (messages) is called and the current Locale
determines what language is presented to the user.

Java SE 8 Programming 19 - 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Changing the Locale

To change the Locale:

• Set currentLocale to the desired language.

• Reload the bundle by using the current locale.

public void setFrench(){

currentLocale = frLocale;

messages = ResourceBundle.getBundle("MessagesBundle",
currentLocale);

}

After the menu bundle is updated with the correct locale, the interface text is output by using
the currently selected language.

Java SE 8 Programming 19 - 15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Sample Interface with French

After the French option is selected, the updated user interface
looks like the following:

=== Localization App ===

1. Régler à l'anglais

2. Régler au français

3. Réglez chinoise

4. Définir pour la Russie

5. Afficher la date

6. Montrez-moi l'argent!

q. Saisissez q pour quitter

Entrez une commande:

The updated user interface is shown in the slide. The first and last lines of the application
could be localized as well.

Java SE 8 Programming 19 - 16

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Format Date and Currency

• Numbers can be localized and displayed in their local
format.

• Special format classes include:
– java.time.format.DateTimeFormatter

– java.text.NumberFormat

• Create objects using Locale.

Changing text is not the only available localization tool. Dates and numbers can also be
formatted based on local standards.

Java SE 8 Programming 19 - 17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Displaying Currency

• Format currency:
– Get a currency instance from NumberFormat.

– Pass the Double to the format method.

• Sample currency output:
1 000 000 руб. ru_RU
1 000 000,00 € fr_FR

￥1,000,000.00 zh_CN

£1,000,000.00 en_GB

Create a NumberFormat object by using the selected locale and get a formatted output.

Java SE 8 Programming 19 - 18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

1 package com.example.format;

2

3 import java.text.NumberFormat;

4 import java.util.Locale;

5

6 public class NumberTest {

7

8 public static void main(String[] args) {

9

10 Locale loc = Locale.UK;

11 NumberFormat nf = NumberFormat.getCurrencyInstance(loc);

12 double money = 1_000_000.00d;

13

14 System.out.println("Money: " + nf.format(money) + " in
Locale: " + loc);

15 }

16 }

Formatting Currency with NumberFormat

Set the location and a numeric value to be displayed. Then, set up a NumberFormat object
with a specified location. Pass the Double to the format method to print the formatted
currency.

Java SE 8 Programming 19 - 19

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Displaying Dates

• Format a date:
– Get a DateTimeFormatter object based on the Locale.

– From the LocalDateTime variable, call the format method
passing the formatter.

• Sample dates:

20 juil. 2011 fr_FR

20.07.2011 ru_RU

Create a date format object by using the locale and the date is formatted for the selected
locale.

Java SE 8 Programming 19 - 20

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Displaying Dates with DateTimeFormatter

3 import java.time.LocalDateTime;

4 import java.time.format.DateTimeFormatter;

5 import java.time.format.FormatStyle;

6 import java.util.Locale;

7

8 public class DateFormatTest {

9 public static void main(String[] args) {

10

11 LocalDateTime today = LocalDateTime.now();

12 Locale loc = Locale.FRANCE;

13

14 DateTimeFormatter df =

15 DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)

16 .withLocale(loc);

17 System.out.println("Date: " + today.format(df)

18 + " Locale: " + loc.toString());

19 }

The setup of the DateTimeFormatter is a bit verbose, but fairly clear. A factory is used to
specify a style and a locale. Then the formatter is passed to the LocalDateTime object’s
format method.

Java SE 8 Programming 19 - 21

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Format Styles

• DateTimeFormatter uses the FormatStyle
enumeration to determine how the data is formatted.

• Enumeration values
– SHORT: Is completely numeric, such as 12.13.52 or 3:30 pm

– MEDIUM: Is longer, such as Jan 12, 1952

– LONG: Is longer, such as January 12, 1952 or 3:30:32 pm

– FULL: Is completely specified date or time, such as Tuesday,
April 12, 1952 AD or 3:30:42 pm PST

The DateTimeFormatter object uses the FormatStyle enumeration to format date, time
or date/time.

Note: At the time of this writing, FULL and LONG can only be used with date or time return
values. Only MEDIUM or SHORT can be used with date/time objects. Using the wrong value
may result in a runtime error. We have not yet determined whether this is a feature or a bug.

Java SE 8 Programming 19 - 22

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Summary

In this lesson, you should have learned how to:

• Describe the advantages of localizing an application

• Define what a locale represents
• Read and set the locale by using the Locale object

• Create and read a Properties file

• Build a resource bundle for each locale

• Call a resource bundle from an application
• Change the locale for a resource bundle

Java SE 8 Programming 19 - 23

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Practice 19-1 Overview:
Creating a Localized Date Application

This practice covers creating a localized application that
displays dates in a variety of formats.

Java SE 8 Programming 19 - 24

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Which bundle file represents a language of Spanish and a
country code of US?
a. MessagesBundle_ES_US.properties

b. MessagesBundle_es_es.properties

c. MessagesBundle_es_US.properties

d. MessagesBundle_ES_us.properties

Java SE 8 Programming 19 - 25

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

Quiz

Which date format constant provides the most detailed
information?
a. LONG

b. FULL

c. MAX

d. COMPLETE

Java SE 8 Programming 19 - 26

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle University and Organizacion Educativa Certific
atic Sฺ C use

onlyฺ

U
na

ut
ho

riz
ed

 re
pr

od
uc

tio
n

or
 d

is
tri

bu
tio

n
pr

oh
ib

ite
dฺ

 C
op

yr
ig

ht
 2

01
2,

 O
ra

cl
e

an
d/

or
 it

s
af

fil
ia

te
sฺ

	Java SE 8 Programming - Student Guide - Volume II
	Table of Contents
	Lesson 11: Exceptions and Assertions
	Objectives
	Error Handling
	Exception Handling in Java
	try-catch Statement
	Exception Objects
	Exception Categories
	Handling Exceptions
	finally Clause
	try-with-resources Statement
	Catching Multiple Exceptions
	Declaring Exceptions
	Handling Declared Exceptions
	Throwing Exceptions
	Custom Exceptions
	Assertions
	Assertion Syntax
	Internal Invariants
	Control Flow Invariants
	Class Invariants
	Controlling Runtime Evaluation of Assertions
	Summary
	Practice 11-1 Overview: Catching Exceptions
	Practice 11-2 Overview: Extending Exception and Using throw and throws
	Quiz

	Lesson 12: Java Date/Time API
	Objectives
	Why Is Date and Time Important?
	Previous Java Date and Time
	Java Date and Time API: Goals
	Working with Local Date and Time
	Working with LocalDate
	LocalDate: Example
	Working with LocalTime
	LocalTime: Example
	Working with LocalDateTime
	LocalTimeDate: Example
	Working with Time Zones
	Daylight Savings Time Rules
	Modeling Time Zones
	Creating ZonedDateTime Objects
	Working with ZonedDateTime Gaps/Overlaps
	ZoneRules
	Working Across Time Zones
	Date and Time Methods
	Date and Time Amounts
	Period
	Duration
	Calculating Between Days
	Making Dates Pretty
	Using Fluent Notation
	Summary
	Practices

	Lesson 13: Java I/O Fundamentals
	Objectives
	Java I/O Basics
	I/O Streams
	I/O Application
	Data Within Streams
	Byte Stream InputStream Methods
	Byte Stream OutputStream Methods
	Byte Stream: Example
	Character Stream Reader Methods
	Character Stream Writer Methods
	Character Stream: Example
	I/O Stream Chaining
	Chained Streams: Example
	Console I/O
	Writing to Standard Output
	Reading from Standard Input
	Channel I/O
	Persistence
	Serialization and Object Graphs
	Transient Fields and Objects
	Transient: Example
	Serial Version UID
	Serialization: Example
	Writing and Reading an Object Stream
	Serialization Methods
	readObject: Example
	Summary
	Practice 13-1 Overview: Writing a Simple Console I/O Application
	Practice 13-2 Overview: Serializing and Deserializing a ShoppingCart
	Quiz

	Lesson 14: Java File I/O (NIO.2)
	Objectives
	New File I/O API (NIO.2)
	Limitations of java.io.File
	File Systems
	Relative Path Versus Absolute Path
	Java NIO.2 Concepts
	Path Interface
	Path Interface Features
	Path: Example
	Removing Redundancies from a Path
	Creating a Subpath
	Joining Two Paths
	Symbolic Links
	Working with Links
	File Operations
	Checking a File or Directory
	Creating Files and Directories
	Deleting a File or Directory
	Copying a File or Directory
	Moving a File or Directory
	List the Contents of a Directory
	Walk the Directory Structure
	BufferedReader File Stream
	NIO File Stream
	Read File into ArrayList
	Managing Metadata
	Symbolic Links
	Summary
	Practice Overview
	Quiz

	Lesson 15: Concurrency
	Objectives
	Task Scheduling
	Legacy Thread and Runnable
	Extending Thread
	Implementing Runnable
	The java.util.concurrent Package
	Recommended Threading Classes
	java.util.concurrent.ExecutorService
	Example ExecutorService
	Shutting Down an ExecutorService
	java.util.concurrent.Callable
	Example Callable Task
	java.util.concurrent.Future
	Example
	Threading Concerns
	Shared Data
	Problems with Shared Data
	Nonshared Data
	Atomic Operations
	Out-of-Order Execution
	The synchronized Keyword
	synchronized Methods
	synchronized Blocks
	Object Monitor Locking
	Threading Performance
	Performance Issue: Examples
	java.util.concurrent Classes and Packages
	The java.util.concurrent.atomic Package
	java.util.concurrent.CyclicBarrier
	Thread-Safe Collections
	CopyOnWriteArrayList: Example
	Summary
	Practice 15-1 Overview: Using the java.util.concurrent Package
	Quiz

	Lesson 16: The Fork-Join Framework
	Objectives
	Parallelism
	Without Parallelism
	Naive Parallelism
	The Need for the Fork-Join Framework
	Work-Stealing
	A Single-Threaded Example
	java.util.concurrent.ForkJoinTask<V>
	RecursiveTask Example
	compute Structure
	compute Example (Below Threshold)
	compute Example (Above Threshold)
	ForkJoinPool Example
	Fork-Join Framework Recommendations
	Summary
	Practice 16-1 Overview: Using the Fork-Join Framework
	Quiz

	Lesson 17: Parallel Streams
	Objectives
	Streams Review
	Old Style Collection Processing
	New Style Collection Processing
	Stream Pipeline: Another Look
	Styles Compared
	Parallel Stream
	Using Parallel Streams: Collection
	Using Parallel Streams: From a Stream
	Pipelines Fine Print
	Embrace Statelessness
	Avoid Statefulness
	Streams Are Deterministic for Most Part
	Some Are Not Deterministic
	Reduction
	Reduction Fine Print
	Reduction: Example
	A Look Under the Hood
	Illustrating Parallel Execution
	Performance
	A Simple Performance Model
	Summary
	Practice

	Lesson 18: Building Database Applications with JDBC
	Objectives
	Using the JDBC API
	Using a Vendor’s Driver Class
	Key JDBC API Components
	Writing Queries and Getting Results
	Using a ResultSet Object
	CRUD Operations Using JDBC API: Retrieve
	CRUD Operations Using JDBC: Retrieve
	CRUD Operations Using JDBC API: Create
	CRUD Operations Using JDBC API: Update
	CRUD Operations Using JDBC API: Delete
	SQLException Class
	Closing JDBC Objects
	try-with-resources Construct
	Using PreparedStatement
	Using PreparedStatement: Setting Parameters
	Executing PreparedStatement
	PreparedStatement:Using a Loop to Set Values
	Using CallableStatement
	Summary
	Practice 18-1 Overview: Working with the Derby Database and JDBC
	Quiz

	Lesson 19: Localization
	Objectives
	Why Localize?
	A Sample Application
	Locale
	Properties
	Loading and Using a Properties File
	Loading Properties from the Command Line
	Resource Bundle
	Resource Bundle File
	Sample Resource Bundle Files
	Initializing the Sample Application
	Sample Application: Main Loop
	The printMenu Method
	Changing the Locale
	Sample Interface with French
	Format Date and Currency
	Displaying Currency
	Formatting Currency with NumberFormat
	Displaying Dates
	Displaying Dates with DateTimeFormatter
	Format Styles
	Summary
	Practice 19-1 Overview: Creating a Localized Date Application
	Quiz

