

LEVEL 6

Grateful acknowledgment is given for the contributions of

Student Book

Rosemary Theresa Barry
Karen R. Boyle
Barbara Brozman
Gary S. Bush
John E. Cassidy
Dorothy Kirk

Teacher Book
Contributing Writers
Dr. Judy Curran Buck
Assistant Professor of Mathematics
Plymouth State College
Plymouth, New Hampshire

Dr. Richard Evans
Professor of Mathematics
Plymouth State College
Plymouth, New Hampshire

Sharon Ann Kovalcik
Bernice Kubek
Donna Marie Kvasnok
Ann Cherney Markunas
Joanne Marie Mascha
Kathleen Mary Ogrin

Dr. Anne M. Raymond
Assistant Professor of Mathematics
Keene State College
Keene, New Hampshire

Stuart P. Robertson, Jr.
Education Consultant
Pelham, New Hampshire

Dr. David Rock
Associate Professor,
Mathematics Education
University of Mississippi

Oxford, Mississippi

Judith Ostrowski
Jeanette Mishic Polomsky
Patricia Stenger

Annabelle L. Higgins Svete

Michelle Lynn Rock
Elementary Teacher
Oxford School District
Oxford, Mississippi

Dr. Jean M. Shaw
Professor of Elementary Education
University of Mississippi
Oxford, Mississippi
oxfor Missision

Dr. Mary K. Porter
Professor of Mathematics
St. Mary's College
Notre Dame, Indiana

Copyright © 2000 by Houghton Mifflin Company. All rights reserved.

[^0]ISBN: 0-395-98538-2
Unit 1 Whole Numbers 1
Unit 2 Decimals 37
Unit 3 Number Theory and Fraction Concepts 65
Unit 4 Fractions 95
Unit 5 Measurement 129
Unit 6 Ratios, Proportions, and Percents 151
Unit 7 Geometry of Plane Figures 185
Unit 8 Using Formulas in Geometry 213
Unit 9 Data, Statistics, and Probability 239
Unit 10 Integers and Equations 265
Unit 11 Coordinate Graphing and Rational Numbers 293
Tables of Measures 315
Glossary 318

UNIT 1 • TABLE OF CONTENTS

Whole Numbers

Lesson Page
1 Place Value and Expanded Notation 3
2 Adding and Subtracting Whole Numbers 5
3 Algebra: Addition Properties and Expressions 7
4 Algebra: Solving Addition and Subtraction Equations 9
5 Multiplying Whole Numbers 12
6 Algebra: Multiplication Properties and Expressions 16
7 Dividing Whole Numbers 18
8 Algebra: Order of Operations 22
9 Problem Solving Application: Multi-step Problems 24
10 Using Data and Statistics 26
11 Algebra: Solving Multiplication and Division Equations 30
12 Problem Solving Strategy: Write an Equation 33

- Unit 1 Review 35
- Cumulative Review \star Test Prep 36

We will be using this vocabulary:

place-value system a number system in which the value of a digit depends on its position in the number

Dear Family,

During the next few weeks, our math class will be learning about whole numbers. You can expect to see homework that provides practice with order of operations. Here is a sample you may want to keep handy to give help if needed.
equation a mathematical sentence in which the values on both sides of the equal sign (=) are equal
standard form a customary form of a number that is written using digits numerical expression a combination of one or more numbers and operations algebraic expression a combination of one or more variables, numbers, and operations

! Order of Operations

When expressions contain more than one operation, simplify by following these steps called the order of operations.

Order of Operations

1. Complete work in parentheses first.
2. Multiply and divide from left to right.
3. Add and subtract from left to right.

Simplify: $4 \times(3+3)-6$

1. First work inside parentheses.
2. Multiply and divide from left.
3. Add and subtract from left to right.

18

During this unit, students will need to continue practicing adding, subtracting, multiplying, and dividing whole numbers.

Sincerely,

In our base-ten numeration system, there are many ways to write a number such as 34,692 .

Standard Form: 34,692 Expanded Form: 30,000 + 4,000 + 600 + 90 + 2
Word Form: Thirty-four thousand, six hundred ninety-two

This place-value chart shows $753,241,908,458$.
Place-Value Chart

Billions Period			Millions Period			Thousands Period			Ones Period			\leftarrow Periods
	$\underset{\sim}{\underset{\sim}{e}}$	$\stackrel{\text { ¿ }}{\substack{0}}$	$\begin{aligned} & \frac{n}{0} \\ & \frac{0}{0} \\ & \frac{1}{3} \\ & \underline{I} \end{aligned}$		$\stackrel{\mathscr{C}}{\stackrel{\text { ® }}{0}}$	$\begin{aligned} & \text { n } \\ & \text { D } \\ & \text { 을 } \\ & \frac{C}{3} \end{aligned}$		$\stackrel{ひ}{\circlearrowright}$		$\underset{\sim}{\curvearrowleft}$	$\stackrel{\text { ¢ }}{0}$	\leftarrow Place Values
7	5	3	2	4	1	9	0	8	4	5	8	\leftarrow Digits

753 billion, 241 million, 908 thousand, $458 \longleftarrow$ Short Word Form
Seven hundred fifty-three billion, two hundred \leftarrow Word Form forty-one million, nine hundred eight thousand, four hundred fifty-eight

Match.

1. $47,328,000$ \qquad
2. $3,020,080$
3. $3,200,008$ \qquad
4. 32,208 \qquad
5. $80,800,800$ \qquad

Complete.

6. 60 hundreds $=$ \qquad thousands
a. thirty-two thousand, two hundred eight
b. forty-seven million, three hundred twenty-eight thousand
c. three million, two hundred thousand, eight
d. three million, twenty thousand, eighty
e. eighty million, eight hundred thousand, eight hundred 4 hundreds = \qquad tens
7. 7 thousands = \qquad hundreds

10 thousands $=$ \qquad ten thousand
8. 20 hundred thousands $=$ \qquad millions

70 thousands $=$ \qquad hundreds
9. 3,000 millions $=$ \qquad billions

10 billion = \qquad millions
10. 5 million $=$ \qquad thousands
45 tens = \qquad ones

Write the number in expanded form.
11. $2,374=$ \qquad
12. $17,472=$ \qquad
13. $48,607=$ \qquad
14. $398,701=$ \qquad
15. $890,823=$ \qquad
16. $8,560,589=$ \qquad

Write the number in standard form.
17. eighty-seven thousand, five
18. seven thousand, two hundred fifty \qquad
19. seven hundred thousand, seventy \qquad
20. four hundred thousand, thirty \qquad
21. eight hundred thousand, eight hundred \qquad
22. six billion, sixty thousand, twelve \qquad
23. 5 million, 3 thousand, 3
24. 250 million, 6

Problem Solving Reasoning

Which sentence represents an exact number? Which represents an estimated number?
25. There were $3,465,893$ visitors to a company's web site.
\qquad

Test Prep \star Mixed Review

27 What number comes next in this pattern? 26, 23, 20,
A 21
C 18
B 19
D 17
26. Twenty-three million people live in the state of California.
\qquad
\qquad

Add 529 + 192.
Before you add, round to estimate: $\mathbf{5 0 0}+\mathbf{2 0 0}=\mathbf{7 0 0}$.

1. Add the ones and regroup.

2. Add the tens and regroup.
$\begin{array}{r}11 \\ 529 \\ +192 \\ \hline 21\end{array}$
3. Add the hundreds.
$\begin{array}{r}11 \\ 529 \\ +192 \\ \hline 721\end{array}$

Use your estimate to check that your answer is reasonable.
The sum $\mathbf{7 2 1}$ is close to $\mathbf{7 0 0}$, so the answer is reasonable.

Subtract 631-157.
Before you subtract, estimate: $\mathbf{6 0 0} \mathbf{- 2 0 0 = 4 0 0}$.

1. Regroup $\mathbf{1}$ ten as $\mathbf{1 0}$ ones and subtract the ones.
$\begin{array}{r}211 \\ 67 \% \\ -157 \\ \hline 4\end{array}$
2. Regroup 1 hundred as $\mathbf{1 0}$ tens and subtract the tens.
3. Subtract the hundreds.

Use your estimate to check that your answer is reasonable.
The difference, 474, is close to 400. The answer is reasonable.

Estimate. Then add.
1.

| 256 | 332 | 544 | 146 | 357 | 679 | 135 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | | 309 |
| ---: |
| +142 |

2. 1,465
4,388 5,492
$\$ 3.06$

$+9,069 \quad+837$

2.75
\$32.75
\$5.72
3.09
$\$ 56.65$
4.50
6.09
+6
6.59
+9.5
$+19.78$

Estimate. Then subtract.
3. 562
$\begin{array}{r}-139 \\ \hline\end{array}$
450
$\begin{array}{r}937 \\ -152 \\ \hline\end{array}$
$\begin{array}{r}649 \\ -383 \\ \hline\end{array}$
707

- 138

4. | 4,084 | 5,399 | 2,309 | 3,408 | $\$ 38.96$ |
| ---: | ---: | ---: | ---: | ---: |
| $-1,338$ | $-1,864$ | $-1,145$ | $-1,127$ | -24.79 |

You may need to regroup more than once before you subtract.

1. Regroup

1 thousand as
10 hundreds.
$\begin{array}{r}310 \\ 4,902 \\ -2,987 \\ \hline\end{array}$
2. Regroup 1 hundred as 10 tens.

3. Regroup
4. Subtract. 1 ten as 10 ones.

99
3
90912
4,987
$-2,987$

Estimate. Then subtract.
5. $\$ 72.56$
\$167.93
17,000
308,419
500,002
-47.95 -38.45 $-2,654$ $\begin{array}{r}-69,999 \\ \hline\end{array}$
-84,896

Add or subtract.
6. 7, 354

780
4, 523
355
5,467
9, 000
6, 341
7, 390
18
345
$\begin{array}{r}45 \\ +\quad 45 \\ \hline\end{array}$
$\begin{array}{r}4,221 \\ \hline\end{array}$
2, 347
8
$+3,460 \quad+9,080$
7. 26,008

50,234
7 5, 163
79,411
82,004
-11,578 -22,166
$-58,756 \quad-45,470$

- 6 6, 810

8, 154
8. 7, 238

5, 138
826
7, 581
3, 536
7,977
+4
782
514
-2,746
$\begin{array}{r}1,268 \\ \hline\end{array}$

Test Prep \star Mired Review

(9) In 1993, about $\mathbf{1 , 1 7 9 , 4 6 7 , 0 0 0}$ people lived in China. How is this number written in words?

A One billion, one hundred seventy-nine million, four hundred sixty-seven thousand

B One million, one hundred seventy-nine thousand, four hundred sixty-seven
C One billion, one hundred seventy-nine million, four hundred sixty-seven

D One billion, one hundred seventy-nine thousand, four hundred sixty-seven
(10) What is this number in standard form?

$$
\begin{aligned}
& \mathbf{7 , 0 0 0 , 0 0 0}+\mathbf{3 0 0 , 0 0 0}+\mathbf{2 , 0 0 0}+\mathbf{7 0 0}+\mathbf{3} \\
& \text { F } 73,273 \\
& \text { G } 7,032,730 \\
& \text { H } 7,302,703
\end{aligned}
$$

J 7,302,730

Addition properties can help you find the value of an expression.

Commutative Property of Addition

Changing the order of the addends does not change the sum.

$$
\begin{aligned}
& 6+7=7+6 \\
& a+b=b+a
\end{aligned}
$$

Associative Property of Addition
Changing the grouping of the addends does not change the sum.

$$
\begin{aligned}
& (4+5)+6=4+(5+6) \\
& (a+b)+c=a+(b+c)
\end{aligned}
$$

Identity Property of Addition
The sum of a number and $\mathbf{0}$ is that number. $\quad \mathbf{6 + 0}=\mathbf{6} \quad \boldsymbol{n}+\mathbf{0}=\boldsymbol{n}$

You can use properties to make sums that are easy to add mentally.

$$
\begin{gathered}
46+17+14+3 \\
46+(17+3)+14 \\
46+20+14 \\
(46+14)+20 \\
60+20 \\
80
\end{gathered}
$$

Name each property.

1. $4+0=4$
2. $3+6=6+3$
3. $(3+5)+2=3+(5+2)$
4. $(3+5)+2=(5+3)+2$ \qquad
5. $0+9=9$ \qquad 6. $(3+9)+7=3+(9+7)$

Use properties to complete.
7. $8+\square=3+8$
8. $+0=9$
9. $16+(9+8)=(16+\ldots)+8$
10. $3+$ \qquad $=9+3$
$(7+3)+$ \qquad $=7+($ \qquad +4)
11. $7+$ \qquad $=7$
12. $(5+4)+$ \qquad $=7+(5+4)$
13. \qquad $+38=38$
$(75+93)+176=75+($ \qquad
Solve mentally. Find the value of the expression.
14. $36+15+5+4$ \qquad $16+7+23+4$ \qquad $7+33+18+12$
15. $42+9+11+8$ \qquad $23+5+17+15$ \qquad $36+22+14+18$ \qquad
16. $29+12+11+38$ \qquad $14+24+26+16$ \qquad $17+26+4+13$ \qquad
17. $18+23+42+7$ \qquad $11+38+19+2$ \qquad $31+42+9+8$ \qquad
18. $17+26+24+23$ \qquad $22+7+53+8$ \qquad

Remember, an algebraic expression contains numbers,

If you know the value of a variable, you can
 operations, and variables. A variable is a letter that represents an unknown value.
evaluate an expression. You evaluate an expression by substituting the value for the variable and simplifying.

$$
\begin{array}{lll}
\text { Expression: } & \text { Value of Variable: } & \text { Substitute and Evaluate: } \\
16-y & y=8 & 16-y \rightarrow 16-8=8 \\
d+17 & d=15 & d+17 \rightarrow 15+17=32
\end{array}
$$

Write the meaning of each expression.
19. s-4
$14+m$
$b+20$
$c-x$

Evaluate the expression for $v=7$ and $t=13$.
20. v-3 \qquad $t+7$ \qquad $36+v$ \qquad $114-v$ \qquad
21. $26+t$
$v+t$ \qquad $t-v$
$t+129$ \qquad
22. $t-5$ \qquad $90-v$ \qquad $89+t$ \qquad $559+v$ \qquad

(Quick Check

23. Write the expanded form of 182,011 .

Work Space.

Evaluate the expression $\boldsymbol{n} \mathbf{- 2 8 7}$ for the value of \boldsymbol{n}.
30. $n=563$
31. $n=300$
32. $n=1,007$
\qquad

Remember, an algebraic equation contains numbers, variables, operations, and an equal sign.

$$
3+x=5 \quad 12-n=7 \quad t-4=24
$$

When you solve an algebraic equation, you need to find the value of the variable.

To solve an addition equation, use the inverse operation:
Subtract the same number from each side of the equation.
Solve: $y+6=9$

1. Choose the inverse operation:

Subtract 6 from each side of the equation.
2. Simplify.
3. Check that the solution is correct. Substitute 3 for \boldsymbol{y} to find if the equation is true.

$$
\begin{aligned}
y+6 & =9 \\
y+6-6 & =9-6
\end{aligned}
$$

Subtraction "undoes" addition. Subtraction is the inverse of addition.

Complete the steps to find the solution of the equation.
1.
$b+8=12$
\qquad

$$
j+9-\quad=18-
$$

The equation is true, so the solution is correct.

$$
\begin{array}{r}
y+6=9 \\
3+6=9 \\
9=9
\end{array}
$$

$$
j=
$$

\qquad
2. $h+7=15$
$h+\ldots-\quad=15-$

$$
h=
$$

$20=k+5$
$-\quad-\quad=k+5-5$
$\ldots=k$
$z+7-$ \qquad $=16$ -

$$
z=
$$

Solve the equation.
3. $x+8=11$ \qquad

$$
h+8=24
$$

\qquad

$$
v+3=13
$$

\qquad
4. $j+7=13$ \qquad $n+6=18$ \qquad $g+9=27$ \qquad
5. $y+17=32$ \qquad $d+26=40$ \qquad $16+t=25$ \qquad
6. $a+7=20$ \qquad
$8+b=17$ \qquad
$c+15=31$

You can also solve subtraction equations using inverse operations

To solve a subtraction equation, add the same number to each side of the equation.

Solve: $\boldsymbol{m}-8=9$

1. Choose the inverse operation. $\quad m-8=9$

Add 8 to each side of the equation. $m-8+8=9+8$
2. Simplify.

$$
m=17
$$

3. Check that the solution is correct.

Substitute 17 for \boldsymbol{m} to check whether the equation is true.

$$
\begin{array}{r}
m-8=9 \\
17-8=9 \\
9=9
\end{array}
$$

Addition "undoes" subtraction. Addition is the inverse of subtraction.

The equation is true, so the solution is correct.

Complete the steps to find the solution of the equation.

Solve the equation.
9. $t-9=7$
$m-6=23$
$b-8=20$
$j-10=16$
$c-9=27$
$g-19=37$
10. $q-18=15$ \qquad

$$
z-12=29
$$

$$
w-32=32
$$

$$
g-19=37
$$

\qquad $x-15=100$
11. $b-75=9$ \qquad

$$
k-83=37
$$

$$
a-16=20
$$

\qquad $r-25=0$ \qquad

$$
y-123=45
$$

\qquad
12. $18=n-7$

$$
m-11=31
$$

$$
d-105=17
$$

$$
86=f-10
$$

\qquad $48=j-19$ \qquad
\qquad

Solve the equation. First decide whether to add or subtract.
13. $x-9=25$ \qquad $m+12=18$ \qquad $k+7=36$ \qquad $b-11=17 \ldots n-8=34$ \qquad
14. $w+16=32$ \qquad $b+51=75$
$q-17=40$ \qquad $s-33=68 _x+22=59$ \qquad
15. $r+54=72$ \qquad $t-9=47$
$g-11=20$ \qquad $33=d-5$ \qquad $17+f=17$ \qquad
16. $x-5=19$ \qquad $13+n=30$ \qquad $h+17=42$ \qquad $p-35=22$ \qquad $26=8+v$ \qquad
17. $27=e+15$ \qquad $w-38=45$ \qquad $125=b+112$ \qquad $98=t-7$ \qquad $32+y=83$ \qquad

Problem Solving

Reasoning
Solve.

You can think of solving an equation, such as $\boldsymbol{x}+\mathbf{5}=\mathbf{1 1}$, in terms of a balance scale. Each number represents a weight.

18. Could you take 3 blocks off each side and still keep the scale balanced? Explain.
19. How does removing 5 blocks help you to find the weight represented by \boldsymbol{x} ?
\qquad
\qquad

Test Prep $*$ Mized Review

(21) What is the solution of the equation $276+n=276 ?$

A 0
B 1
C 10
D 20
(21) Which number sentence goes with $97+5=n$?

F $5-N=97$
G $97 \times 5=N$
H $N-5=97$
J $N \times 5=97$

Sometimes when you multiply, you may need to regroup.
Multiply 6×583.
Before you multiply, round to estimate. $6 \times \mathbf{6 0 0}=\mathbf{3 , 6 0 0}$

1. Multiply the ones.
Regroup.
2. Multiply the tens. Add and regroup.
$\begin{array}{r}583 \\ \times \quad 6 \\ \hline 8\end{array}$
3. Multiply the hundreds.

Add.

Use your estimate to check that your answer is reasonable.
The product 3,498 is close to $\mathbf{3 , 6 0 0}$, so the answer is reasonable.

Estimate. Then multiply.

1. $\begin{array}{r}623 \\ \times 7\end{array}$
749 $\times 3$
658
345
$\begin{array}{r}985 \\ \times 5 \\ \hline 25\end{array}$
509
2. 835
933
336
$\begin{array}{r} \\ \times \\ \hline\end{array}$
$\begin{array}{r}211 \\ \times 6 \\ \hline\end{array}$
$\times 8$
$\begin{array}{r} \\ \times \\ \hline\end{array}$
3.

$$
\begin{array}{r}
2,531 \\
\times 8 \\
\hline
\end{array}
$$

$\begin{array}{r}3,819 \\ \times 5 \\ \hline\end{array}$
$\begin{array}{r}8,537 \\ \times 3 \\ \hline\end{array}$
3, 841
8, 362
$\begin{array}{r} \\ \times \\ \hline\end{array}$
4.

$$
\text { 9, } 543
$$

5, 786
$\times 6$
3, 215
$\begin{array}{r} \\ \times 9 \\ \hline\end{array}$
28,601
$\times 7$
97,832
$\times 4$
5. $\quad 95,283$

236145
$\begin{array}{r}7,486 \\ \times 5 \\ \hline\end{array}$
$\begin{array}{r}6,581 \\ \times 3 \\ \hline\end{array}$
$\begin{array}{r}2,367 \\ \times 6 \\ \hline\end{array}$
6.

$$
\begin{array}{r}
2552 \\
\times 9 \\
\hline
\end{array}
$$

8, 541
$\begin{array}{r}2,395 \\ \times 8 \\ \hline\end{array}$
94,841
$\times 6$
87,562
477,403
959,312

23 3, 361
$\times 3$
7. 632,658
$\times 7$
295,611
$\times 2$
$\times 4$

$$
\begin{array}{r}
9 \\
\hline
\end{array}
$$

\qquad

These examples show how to multiply by 10, 100, or $\mathbf{1 , 0 0 0}$.

458
$\frac{\times 10}{4,580} \sim 1$ zero

458
$\times 100$

458
$\frac{\times 1,000}{458,000} \underbrace{2}$ zeros

Multiply.

8.
9. 275
$\begin{array}{r}275 \\ \times 10 \\ \hline\end{array}$
$\begin{array}{r}275 \\ \times 100 \\ \hline\end{array}$
$\begin{array}{r}275 \\ \times 1,000 \\ \hline\end{array}$
$\begin{array}{r}62 \\ \times 1 \\ \hline\end{array}$
62
$\begin{array}{r}10 \\ \times \\ \hline\end{array}$
10.

$$
\begin{array}{r}
4,607 \\
\times 1 \\
\hline
\end{array}
$$

4, 607
4, 607
4, 607

$$
\begin{array}{r}
10 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
\times 100 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
1,000 \\
\hline
\end{array}
$$

10. 380
$\begin{array}{r}38 \\ \times 10 \\ \hline\end{array}$

206 $\begin{array}{r}100 \\ \times \\ \hline\end{array}$

1,000
$\times 1$
$\begin{array}{r}8,072 \\ \times 10 \\ \hline\end{array}$
9, 300
$\begin{array}{r}900 \\ \times 10 \\ \hline\end{array}$
11.

815
$\times 100$

$\begin{array}{r}36 \\ \times 10 \\ \hline\end{array}$
100 1,000
\times
600
$\begin{array}{r}60 \\ \times 100 \\ \hline\end{array}$

1,000
$\times 1$
2,900
10
\times
12. $10 \times 72=$ \qquad $10 \times 56=$
$1,000 \times 39=$
13. $1,000 \times 60=$ \qquad $100 \times 123=$ \qquad $10 \times 275=$ \qquad
14. $100 \times 98=$ \qquad $100 \times 75=$ \qquad $100 \times 90=$ \qquad
15. $36 \times 1,000=$ \qquad $498 \times 100=$ \qquad $257 \times 10=$ \qquad
16. $10 \times 85=$ \qquad
$100 \times 145=$ \qquad $1,000 \times 512=$ \qquad
17. $1,000 \times 400=$ \qquad $302 \times 1,000=$ \qquad $1,000 \times 6,104=$ \qquad

Complete.

18. Twenty nickels have the same value as 1 dollar. How many nickels have the same value as $\mathbf{1 0}$ dollars?
19. Ten dimes have the same value as 1 dollar. How many dimes have the same value as 25 dollars?
20. Four quarters have the same value as 1 dollar. How many quarters have the same value as 1,000 dollars?
21. One hundred pennies have the same value as 1 dollar. How many pennies have the same value as $\mathbf{1 0 0}$ dollars?

When you multiply by a 2-digit number, you should estimate before you multiply.

Find: $\mathbf{4 2 \times 8 5}$ First, round to estimate: $\mathbf{4 0} \times \mathbf{9 0}=\mathbf{3 , 6 0 0}$
Then find the actual product.

1. Multiply by the ones digit. Remember to regroup.

2. Multiply by the tens digit. Remember to regroup.

3. Add the partial products.

$$
\begin{array}{r}
85 \\
\times 42 \\
\hline 170 \\
+340 \\
\hline 3,570
\end{array}
$$

You do not have to write the zero.

You can use your estimate to check that your answer is reasonable. The product $\mathbf{3 , 5 7 0}$ is close to $\mathbf{3 , 6 0 0}$, so the answer is reasonable.

Estimate. Then multiply.

22.	64	78	61	24	32	25
	$\begin{array}{r} \\ \times 32 \\ \hline\end{array}$	$\begin{array}{r}14 \\ \times 14 \\ \hline\end{array}$	+56	$\begin{array}{r} \\ \times 96 \\ \hline\end{array}$	+59	+74

23.

952
863
$\begin{array}{r}84 \\ \times 3 \\ \hline\end{array}$
465
$\begin{array}{r}42 \\ \times \\ \hline\end{array}$
982
$\times 47$
924
98
\times
953
95
\times
24. 486
$\begin{array}{r}47 \\ \times \\ \hline\end{array}$
728
$\begin{array}{r}76 \\ \hline\end{array}$
$\begin{array}{r}695 \\ \times 89 \\ \hline\end{array}$
486
982
779
$\times 72 \times 63$
$\begin{array}{r}78 \\ \times 9 \\ \hline\end{array}$
25. 9, 831 85
$\times 8$

6, 521 $\times 62$

6, 572 $\begin{array}{r} \\ \times 94 \\ \hline\end{array}$

2, 158 $\begin{array}{r}73 \\ \hline\end{array}$

5, 086 7
\times

5, 261
$\begin{array}{r} \\ \times 39 \\ \hline\end{array}$
\qquad

Multiplying by a 3-digit number is like multiplying by a 2-digit number.

Multiply 392×672.
3. Multiply by the hundreds digit.
4. Add the partial products.

1. Multiply by the ones digit.

$$
\begin{array}{r}
672 \\
\times 394 \\
\hline 2688
\end{array}
$$

2. Multiply by the tens digit.

$$
\begin{array}{r}
672 \\
\times 394 \\
\hline 2,688 \\
60,48
\end{array}
$$

672
6394
$\times 2688$
6 0, 48
20 1, 6
672
6394
$\times 2,688$
60,48

$+201,6$
264,768

201,
300×672

Remember to check that the answer is reasonable.

Multiply.

26.

762
503
$\times 381$
$\times 741$
638
4, 610
3,944
439
$\times \quad 210$
3.37
$\times \quad$

Rewrite each exercise vertically. Find the product.
27. $4,050 \times 89=$ \qquad $396 \times 66=$ \qquad
28. $7,430 \times 365=$ \qquad $8,362 \times 123=$ \qquad

Problem Solving Reasoning
29. There are 675 students at school. If each student brings 25 pennies to school, how many pennies will there be?
30. There are 500 sheets of paper in one ream of paper. How many sheets of paper are there in 1,000 reams of paper?

Test Prep * Mixed Review

31 The Supreme T-Shirt Company made 3,924 shirts in the first week of May. They need $\mathbf{7 , 2 3 8}$ shirts. Which equation could be used to find how many more shirts they need?
A $7,238+t=3,924$
C $3,924-t=7,238$
B $3,924+t=7,238$
D $3,924+7,238=t$

32 Mr. Singh had 375 boxes in his office. Which expression shows how many boxes he has left after he used \boldsymbol{n} boxes?
F $375+n$
H $n \div 375$
G 375 - n
J $n-375$

Knowing the properties of multiplication can help you evaluate expressions.

Identity Property of Multiplication

The product of a number and 1 is that number.

$$
8 \times 1 \rightarrow 8
$$

$$
n \times 1 \rightarrow n
$$

Commutative Property

Changing the order of the factors does not change the product.

$$
\begin{aligned}
& 8 \times 5=5 \times 8 \\
& a \times b=b \times a
\end{aligned}
$$

Zero Property of Multiplication

The product of a number and $\mathbf{0}$ is $\mathbf{0}$.

$$
\begin{aligned}
& 8 \times 0 \rightarrow 0 \\
& n \times 0 \rightarrow 0
\end{aligned}
$$

Associative Property

Changing the grouping of the factors does not change the product.

$$
\begin{aligned}
& (4 \times 2) \times 3=4 \times(2 \times 3) \\
& (a \times b) \times c=a \times(b \times c)
\end{aligned}
$$

Distributive Property

The product of a factor and a sum equals the sum of the products.

$$
\begin{aligned}
8 \times(20+4) & =(8 \times 20)+(8 \times 4) \\
8 \times 24 & =160+32 \\
192 & =192
\end{aligned}
$$

You can use the associative and commutative properties to make products that are easy to multiply mentally.
$5 \times 7 \times 8 \times 6$
$(5 \times 8) \times(7 \times 6)$
40×42
1,680

Use the properties to complete.

1. $(2 \times 14) \times 50=2 \times(14 \times \square)$

$$
5 \times(80+3)=(5 \times \ldots)+(5 \times 3)
$$

2. $121 \times$ \qquad $=8 \times 121$
$6 \times 0=$ \qquad
$8 \times$ $=8$

Identify the property.
3. $2 \times 63=63 \times 2$ \qquad
4. $25 \times 0=0$ \qquad
5. $(4 \times 2) \times 3=4 \times(2 \times 3)$ \qquad

Solve mentally. Use multiplication properties to help you.
6. $10 \times 7 \times 6 \times 10$ \qquad
$14 \times 8 \times 0 \times 5$ \qquad $20 \times 4 \times 5 \times 10$ \qquad
7. $12 \times(11+3+6)$ \qquad
$32 \times 25 \times 4 \times 2$ \qquad
$48 \times 2 \times 0 \times 19$ \qquad
\qquad

Here are some ways to write multiplication expressions:
4 - 8
$6 a$
(5)(n)

5 times a number\}
$2(b+c)$
2 times the sum of b and c

Use what you know about evaluating expressions to evaluate multiplication expressions.

Expression: Value of Variable:
Evaluate:
16y

$$
y=8
$$

$16 y=16 \times 8$ or 128
Write as an algebraic expression.
8. \boldsymbol{n} times \boldsymbol{m}
\qquad
9. three times the difference of \boldsymbol{p} and 6
the product of 7 and y
\qquad
the product of 7 and the sum of \boldsymbol{v} and q
twice the sum of t and 2
z times 136
\qquad
multiply s by the sum of 8 and \boldsymbol{t}
\qquad

Evaluate for $v=7$ and $t=9$.

Review what you know about dividing with 1-digit divisors.
Try to use mental math whenever possible to find quotients such as the one below.

Divide: $7 \longdiv { 6 2 }$

$$
\text { (quotient } \times \text { divisor) }+ \text { remainder }=\text { dividend }
$$

Divide. Check your answer.

1. $8 \longdiv { 4 8 }$
$5 \longdiv { 4 5 }$
$9 \longdiv { 8 1 }$
$4 \longdiv { 3 2 }$
2. $6 \longdiv { 3 8 }$
$2 \longdiv { 1 5 }$
$8 \longdiv { 2 7 }$
$4 \longdiv { 3 1 }$
3. $5 \longdiv { 4 8 }$
7) $\longdiv { 5 2 }$
$6 \longdiv { 3 8 }$
$8 \longdiv { 9 0 }$
4. $3 \longdiv { 8 9 }$
$2 \longdiv { 7 5 }$
$4 \longdiv { 6 3 }$
$6 \longdiv { 9 0 }$
5. $7 \longdiv { 8 5 }$
$3 \longdiv { 5 4 }$
$4 \longdiv { 8 9 }$
$2 \longdiv { 5 6 }$
6. $9 \longdiv { 1 0 7 }$
$3 \longdiv { 5 9 }$
7 $\longdiv { 9 3 }$
$9 \longdiv { 2 0 0 }$

When you divide, you may need to write zero in the quotient. Find 1,525 $\div 3$.
First, estimate to have a sense of what the quotient will be. Use compatible numbers to estimate.
$3 \longdiv { 1 , 5 2 5 } \rightarrow 3 \longdiv { 1 , 5 0 0 }$
You know that the quotient will be about 500.
Now divide:

Compatible numbers are numbers that are easy to divide mentally. Choose numbers that are close to the actual numbers.
3. Bring down the 5 and
divide 25 ones by 3 .
3. Bring down the 5 and
divide 25 ones by 3 .

> 508 R1
> $\left.\begin{array}{r}3 \lcm{1,525} \\ -15 \\ \hline 025 \\ -24 \\ \hline 1\end{array}\right\}$

Remember to check the answer. Multiply the quotient by the divisor. Add the remainder to the product. The result should be the dividend.
2. Bring down the 2 . There are not enough tens to divide. Write a 0 in the quotient.

$$
\begin{gathered}
50 \\
3 \longdiv { 1 , 5 2 5 } \\
-15 \downarrow \\
-02
\end{gathered}
$$

Estimate.

7. $3 \longdiv { 6 2 3 }$
$4 \longdiv { 8 2 7 }$
$6 \longdiv { 6 5 4 }$
$5 \longdiv { 5 3 9 }$
$3 \longdiv { 6 0 5 }$
8. $7 \longdiv { 1 , 4 2 1 }$
$6 \longdiv { 1 , 6 2 4 }$
$5 \longdiv { 4 , 5 0 6 }$
$5 \longdiv { 2 , 0 3 0 }$
$8 \longdiv { 5 , 6 6 6 }$
9. $8 \longdiv { 2 , 4 0 5 }$
$7 \longdiv { 4 , 9 6 5 }$
$4 \longdiv { 2 , 6 0 1 }$
$2 \longdiv { 1 , 6 3 4 }$
$6 \longdiv { 2 , 4 3 2 }$
10. $9 \longdiv { 2 , 8 1 4 }$
$8 \longdiv { 3 , 8 7 2 }$
$7 \longdiv { 4 , 8 6 4 }$
$3 \longdiv { 1 , 0 3 9 }$
$5 \longdiv { 3 , 0 5 0 }$

You can follow these steps to divide by a 2-digit number.
Find $\mathbf{7 , 9 8 0} \div 32$.

1. Estimate to place the first digit in the quotient. Use rounding to estimate.

2. Repeat the steps to continue dividing. Remember to write the remainder in the quotient.

249 R 12
$3 2 \longdiv { 7 , 9 8 0 }$
$\begin{array}{r}1 \\ -6458 \\ 158 \\ -1280 \\ -288 \\ \hline 12\end{array}$

2. Multiply. Subtract. Bring down the next digit.

$$
\begin{gathered}
2 \\
3 2 \longdiv { 7 , 9 8 0 } \\
-64 \downarrow \\
\hline 158
\end{gathered}
$$

4. Check the answer.

$$
\begin{array}{r}
249 \\
\times \quad 32 \\
\hline 498 \\
747 \\
\hline 7,968 \\
+12 \\
\hline 7,980
\end{array}
$$

Divide. Remember to check your work.
11. $5 6 \longdiv { 8 5 7 }$
$3 8 \longdiv { 6 3 5 }$
$2 2 \longdiv { 8 , 3 2 9 }$
$4 5 \longdiv { 1 , 7 2 8 }$
12. $2 3 \longdiv { 4 , 6 7 0 }$
$1 9 \longdiv { 4 , 2 8 7 }$
$6 8 \longdiv { 2 , 4 3 9 }$
$7 3 \longdiv { 8 , 9 6 7 }$
13. $4 8 \longdiv { 9 , 7 2 4 }$
$3 7 \longdiv { 8 , 6 3 2 }$
$5 2 \longdiv { 2 , 6 4 7 }$
$9 1 \longdiv { 8 , 7 4 3 }$
\qquad

Dividing by 3-digit numbers is similar to dividing by 2-digit numbers.

Find: 397) $\overline{2,382}$
Estimate to place the first digit in the quotient.

Find: 432 $\longdiv { 2 2 3 , 3 4 2 }$
Estimate to place the first digit in the quotient.

516 R 430
$4 3 2 \longdiv { 2 2 3 1 6 4 2 }$
$\begin{array}{r}-2160 \downarrow \\ \hline 734\end{array}$
$\frac{432}{3.02}$
$\begin{array}{r}-2,592 \\ \hline 430\end{array}$
$1 1 2 \longdiv { 8 2 , 9 3 6 }$
$3 0 5 \longdiv { 2 0 8 , 3 1 7 }$
15. $1 1 3 \longdiv { 9 4 , 1 1 7 }$
$2 5 6 \longdiv { 2 3 8 , 9 2 0 }$
Divide and check.
$9 3 2 \longdiv { 3 , 7 3 6 }$
14. $7 2 6 \longdiv { 3 , 6 3 0 }$
$4 0 5 \longdiv { 3 , 2 4 0 }$
$8 4 5 \longdiv { 5 , 0 7 0 }$

Solve.

16. The stadium sold 650,000 tickets for a hockey game. The game was sold out. There are 130 seating sections in the stadium. Each section has the same number of seats.

How many seats are in each section? \qquad

Test Prep \star Mixed Review

17 The Cortez family drove to a vacation spot. To get there, they traveled 467 miles the first day, 526 miles the second day, and 280 miles the third day. About how many miles did they drive in all?
A 1,100 miles
C 1,300 miles
B 1,200 miles
D 1,400 miles

18 A bookstore owner has boxes of books shipped to her. Each box contains 9 books. Which expression shows how many books there are in n boxes?
F 9 •n
H $9-n$
G $9+n$
J $n \div 9$

Some expressions involve more than one operation. Follow the order of operations

Order of Operations

1. Perform operations in parentheses.
2. Multiply and divide from left to right.
3. Add and subtract from left to right.

- There are no parentheses.

$$
\begin{aligned}
& 12-6 \times 2+11 \\
& 12-6 \times 2+11
\end{aligned}
$$

$$
12-12+11
$$

$$
0+11
$$

The order of operations can be used in expressions that contain variables.

Evaluate $\mathbf{4 + x + 3 \times 2}$ for the given value of \boldsymbol{x}.
First multiply. Then add.

x	$4+x+3 \times 2$
0	$4+0+3 \times 2 \rightarrow 10$
1	$4+1+3 \times 2 \rightarrow 11$
5	$4+5+3 \times 2 \rightarrow 15$

Simplify the expression using the order of operations.

1. $3+8 \times 2$ \qquad $9 \times 0+4$ \qquad $10-8 \div 4+2$ \qquad $5 \times 5+5 \div 5$ \qquad
2. $6 \times 5-4$ \qquad $10+2 \times 3$ \qquad $8+8 \div 8-8$ \qquad $7 \times 2+6-3 \div 3$ \qquad

Evaluate the expression for the given values.
3.

s	$6 \times s+2 \times s$
0	
1	
2	

m	$m+6 \div 3$
5	
10	
15	

z	$5 \times 9-z$
9	
6	
3	

4.

d	$14-d \div 3$
6	
12	
15	

g	$4+7 \times g$
3	
4	
5	

9	$3 \times 9-2 \times 7$
7	
10	
12	

Name \qquad

Parentheses and fraction bars are grouping symbols. They are used to group numbers and operations in an expression.

Perform the operation inside parentheses first.

$$
\begin{gathered}
(4+6) \div 5 \\
10 \div 5
\end{gathered}
$$

2

A fraction bar means division. It also acts as a grouping symbol.

$$
\begin{aligned}
& \frac{4+6}{5} \leftarrow \text { Simplify the numerator first. } \\
& \frac{10}{5} \text { or } 2 \leftarrow \text { Then divide. }
\end{aligned}
$$

Simplify the expression using the order of operations.
5. $6 \times(7-4)+2 \quad(5+2) \times(6-3) \quad(15-4)+2 \times(6-5) \quad 4 \div(8-6) \times(1 \times 9)$
6. $\frac{5-3}{2}$
$\frac{18+6}{6}$
$\frac{8-2 \times 4}{9+7}$
$\frac{4+1 \times 9-4}{3 \times(3-2)}$

Insert parentheses to make the equation true.
7. $9-3 \times 3-2=6$
$16+5 \div 10-3=3$
$15-5+5 \times 7-6=15$

Problem Solving
 Use the order of operations to compare. Write $>,<$, or $=$

 Reasoning in each \bigcirc.8. $6+9-6 \div 2 \bigcirc 6+(9-6)-2$
$\frac{11+4}{4+(5-4)} \bigcirc \frac{4+(5-4)}{11+4}$
(${ }^{\text {Guick Check }}$
Find the quotient.
9. $8 \longdiv { 9 6 0 }$
10. $9 \longdiv { 7 , 4 8 8 }$
11. $2 3 \longdiv { 9 8 }$
12. $2 7 \longdiv { 9 , 0 3 3 }$
13. $5 9 \longdiv { 6 2 , 9 0 9 }$
14. $3 0 6 \longdiv { 2 0 , 8 1 8 }$

Use the order of operations to evaluate the expression.

Work Space.
15. $4 \cdot 8+8 \cdot 3-16$
\qquad
16. $15(43-28)-4(8+11)$
\qquad

Sometimes you need to use two or more steps in order to solve a problem.

Try to write simpler problems that will help you find each fact you need. Solve each simpler problem. Then use the answers to solve the original problem.

Tips to Remember:

$\begin{array}{llll}\text { 1. Understand 2. Decide } & \text { 3. Solve 4. Look back }\end{array}$

- Think about what the problem is asking you to do. What information does the problem give you? What do you need to find out?
- Try to break the problem into parts.
- Think about the action in the problem. Is there more than one action? Which operation best represents the actionaddition, subtraction, multiplication, or division?

Solve.

1. A store sold 25 T-shirts for $\$ 10.50$ each. How much profit did the store make if it paid $\$ 52.50$ for the shirts?

Think: How can you find the total sales for the T-shirts?
\qquad
\qquad
Answer
3. Each company truck can hold 36 crates. Each crate can hold 2 dozen bottles. How many bottles can 2 trucks hold?
5. A group of 128 people attended a meeting. Half the people were seated in the mezzanine. Fifteen people were seated in the balcony. How many people were not seated in the balcony or mezzanine?
2. A total of $\mathbf{4 8 0}$ students went on a school trip. There were 4 adults for every 32 students. How many people went in all?

Think: How can you find how many adults went on the trip?
\qquad
\qquad
Answer
4. A carton of apple juice holds 6 juice packs. A carton of grape juice holds 8 juice packs. How many juice packs are in 12 cartons of each?
\qquad
6. Osamu bought two $5-\mathrm{lb}$ bags of potatoes. The apples he bought weighed 2.5 lb less than the potatoes. He also bought some fish. If the bag of groceries weighed 20 lb , how much did the fish weigh?
7. Tomas wants to buy a bicycle that costs $\$ 143$. He has already saved \$39. If he saves \$8 a month, how many months will it take him to save enough money to buy it?
9. Two hundred ninety students went on a trip to the zoo. There were 98 fourth graders and 89 fifth graders. The rest were sixth graders. How many sixth graders were there?
11. Each day one gorilla eats 144 biscuits of monkey chow and 4 oranges. One day an attendant fed 24 oranges and some biscuits to a few gorillas. How many biscuits did he feed them?
13. The zoo gift shop purchases a gross of key chains at a wholesale price of $\$ 15.00$. They sell the key chains for $15 ¢$ each. How much profit does the gift shop make? (Hint: 1 gross = 144)

Extend Your Thinking

15. Go back to problem 10. Tell another way the 8 tour guides might have divided up the $\mathbf{2 9 0}$ students.
\qquad
\qquad
16. Go back to problem 12. Can you solve the problem another way?
17. Erin bought a paperback book for $\$ 2.98$ and a hardcover book for $\$ 9.98$. How much change did she get back from $\mathbf{\$ 1 5}$?
18. Each of 7 tour guides took 36 of the 290 students. An eighth guide took the rest of the students. How many students did the eighth guide take?
19. Seventeen elephants each eat 5 loaves of special bread per day. How many total loaves do the 17 elephants eat in a 365day year?
20. Jason wants to purchase 2 T-shirts at $\$ 19.75$ each and a hat for $\$ 7.45$. He has $\mathbf{\$ 5 0 . 0 0}$. Does Jason have enough money?
\qquad
21. Go back to problem 11. Describe the method you used to solve the problem.
\qquad
\qquad
\qquad
22. Go back to problem 14. Did you find an exact answer or an estimate? Explain.

This graph shows the favorite sports of some students.

How many students chose hockey as their favorite sport?

The bar for hockey ends at the line between 100 and 150. So, about 125 students chose hockey as their favorite sport.

Favorite Sport

Use the bar graph to estimate the answer.

1. How many students chose kickball as their favorite sport?
\qquad
2. How many more students chose soccer than kickball as their favorite sport?
3. Which sport did the most students choose as their favorite sport?
\qquad
4. How many students chose hockey or basketball as their favorite sport?

To find the greatest number in a bar graph, look for the longest bar. To compare two items of data in a table, compare the digits of the two numbers. Start from the left.

Which river is longer, the Mississippi or the Missouri?
$\begin{aligned} & 2,340 \\ & 2,315\end{aligned}>$
The thousands digits are the same.
The hundreds digits are the same.
In the tens digits, 4 is greater than 1.
The Mississippi River is longer than the Missouri.

River	Length (in miles)
Arkansas	1,459
Mississippi	2,340
Missouri	2,315
St. Lawrence	1,900
Yukon	1,979

Compare the lengths of each pair of rivers using >or <.
5. Arkansas and Missouri

St. Lawrence and Yukon
Yukon and Mississippi
6. Write the names of the rivers in order from the longest to the shortest river.
\qquad

A set of data can be discussed using a single typical number, such as when you hear, "They averaged 15 miles each day." You can use the mean, median, mode, or range to summarize a set of data.

Find the range, mean, median, and mode of this data set.

Distances covered by walk-a-thon participants: $\mathbf{5}$ miles, $\mathbf{7}$ miles, $\mathbf{3}$ miles, $\mathbf{2}$ miles, $\mathbf{3}$ miles

The range: The difference between the greatest value (7) and the least value (2) in the data.

$$
7-2=5 \text { miles }
$$

The mean (or average): The sum of the items divided by the number of items.

$$
\frac{5+7+3+2+3}{5}=\frac{20}{5} \text { or } 4 \text { miles }
$$

The median: The middle number when the data are arranged from least to greatest

If there are two middle numbers, use the

Find the mean, median, mode, and range of the set of data.

The mode: The number that occurs most frequently

$$
2 \underbrace{3 \quad 3}_{\text {mode }} 57
$$

A data set can have more than one mode. For example, 2, 3, 3, 5, 7, 7, has two modes; 3 and 7. If no number occurs more frequently than the others, the data have no mode.
7. $6,9,7,4,4$
\qquad
7, 10, 14, 23, 16
34, 41, 33, 41, 31
Mean \qquad Mean \qquad
Median \qquad Median ___
Median
Mode \qquad Mode \qquad Mode \qquad
Range \qquad
Range \qquad
Range \qquad

You can use a line plot to help you to organize data. This line plot shows the number of miles that 25 students walked this week. Each \mathbf{X} represents the distance walked by one student.

You can count the X's starting from the left to find the median.

Distances Walked by 25 Students

Use the line plot to answer the question.
8. How many students walked exactly 3 miles this week?
10. What distance did the greatest number of students walk this week?
9. What is the greatest distance any of these students walked this week?
11. Six students walked exactly the same distance. What distance did they walk?
\qquad

Use the data set below for exercises 12-15. It lists the number of books that 12 students read last summer.

$8,10,11,15,8,6,6,8,10,9,10,7$

12. Record the data on the line plot.

13. Find the mean, median, mode, and range.

Mean \qquad Median \qquad
Mode \qquad Range \qquad
14. Suppose a mistake was made when recording the data. The 15 should have been a 3 . How will this change affect the mean, median, mode, and range?

Mean \qquad Median \qquad
Mode \qquad Range \qquad
15. Find the new mean, median, mode, and range.

Mean \qquad Median \qquad Mode \qquad Range \qquad
\qquad

Find the range of the data.

Average January Temperature of Three U.S. Cities	
City	Temperature (${ }^{\circ} \mathrm{F}$)
Roswell, NM	41.4
Concord, NH	19.9
Toledo, OH	23.1

Average April Temperature of Three U.S. Cities	
City	Temperature (${ }^{\circ} \mathrm{F}$)
Billings, MT	44.6
Denver, CO	47.4
Milwaukee, WI	44.6

16. Range \qquad Range \qquad

Problem Solving Reasoning

Use the data to answer the questions. The yearly salaries at one company are:
$\$ 22,000 \quad \$ 22,500 \quad \$ 24,000 \quad \$ 31,500 \quad \$ 150,000$
17. Find the mean, median, and mode of the data.

Mean \qquad
Median \qquad
Mode \qquad
19. Exclude the one very high item from the data. Then find the new mean, median, and mode.

Mean \qquad
Median \qquad
Mode \qquad

Test Prep \star Mired Review

21 Which expression is equivalent to $15 \times n \times 10$?
A $5+n \times 10$
C $15 \times 10 \times n$
B $15 \times n \div 10$
D $15 \times 10 \div n$
18. Which of the three measures best describes the typical salary at the company? Explain.
\qquad
\qquad
20. Which of the three measures now best describes the data? Explain your reasoning.
\qquad
\qquad

22 Ms. Wu drove $\mathbf{1 3 , 5 0 0}$ miles last year. Which equation could be used to find the average number of miles she drove each month?
F $d-12=13,500$
H $12 d=13,500$
G $2+d=13,500$
J $d \div 12=13,500$

To solve addition and subtraction equations, you use inverse operations. To solve multiplication equations, you also use inverse operations. The inverse of multiplying by a nonzero number is dividing by that number.

Solve: $6 y=54$

$$
\begin{aligned}
\frac{6 y}{6} & =\frac{54}{6} \quad \begin{array}{l}
\text { Divide each side of the equation by } 6, \text { because this is the inverse of } \\
\text { multiplying by } 6 .
\end{array} \\
y=9 & \text { Simplify. }
\end{aligned}
$$

You may have been able to find the value of \boldsymbol{y} mentally.
This is a good way to check your work, but you also need to know how to solve equations by writing out these steps. It will help you with more difficult equations in algebra.

Complete the steps to find the solution of each equation.
1.

2.

$b \times 8=72$
$b \times 8 \div-=72 \div$

$$
\boldsymbol{b}=
$$

$j \times 9=81$
$j \times 9 \div-=81 \div$
$m \times 6=42$
$m \times 6 \div-=42 \div$ \qquad
\qquad

$$
j=
$$

$m=$ \qquad

$$
z \times 7=21
$$

$h \times _\div \ldots=$
\qquad

$$
k \times 5=20
$$

$k \times ـ$ \qquad $=$
$k=$ \qquad
$z \times \longrightarrow=$ \qquad
\qquad

Solve the equation.
3. $x \times 8=64$ \qquad
$h \times 6=24$ \qquad

$$
v \times 3=12
$$

\qquad
4. $j \times 7=14$ \qquad
$n \times 6=48$ \qquad
$g \times 9=27$ \qquad
5. $y \times 7=28$ \qquad

$$
d \times 4=40
$$

\qquad
$t \times 5=25$ \qquad
6. $r \times 2=26$ \qquad
$c \times 3=36$ \qquad
$v \times 3=51$ \qquad
7. $g \times 4=92$ \qquad
$t \times 7=56$ \qquad
$b \times 2=82$ \qquad
\qquad

You can also solve division equations using inverse operations.

$$
m \div 8=9
$$

$(m \div 8) \times 8=9 \times 8 \quad$ The inverse of dividing by 8 is multiplying by 8 . Multiply each side of the equation by 8.

$$
\begin{aligned}
m \div \mathbf{1} & =\mathbf{7 2} & & \text { Next, simplify. } \\
m & =\mathbf{7 2} & & \text { The solution is } 72 .
\end{aligned}
$$

Complete the steps to find the solution of the equation.
8.

$$
\frac{b}{4}=16
$$

$$
k \div 8=7
$$

$$
\frac{m}{9}=4
$$

$$
\frac{b}{4} \times \ldots=_\times _\quad\left(k \div _\right) \times _=_\times-\quad \frac{m}{9} \times \ldots=
$$

$$
\mathbf{b}=
$$

\qquad

$$
k=
$$

$m=$ \qquad
9. $\frac{y}{12}=15$
$16=n \div 24$
$25=\frac{k}{18}$

$$
\begin{aligned}
\frac{y}{12} \times \ldots & =15 \times \ldots & 16 \times \ldots & =(n \div 24) \times \ldots \\
y & =- & =n & =k
\end{aligned}
$$

Solve the equation.
10. $t \div 9=7$ \qquad $m \div 6=4$ \qquad

$$
\frac{b}{7}=7
$$

\qquad
11. $j \div 4=9$ \qquad

$$
\frac{c}{5}=10
$$

$$
g \div 7=6
$$

\qquad
12. $\frac{w}{30}=18$ \qquad
$\frac{s}{22}=12$ \qquad

$$
\frac{p}{100}=75
$$

\qquad
13. $\frac{t}{29}=17$ \qquad
$\frac{b}{82}=6$
$\frac{k}{9}=102$ \qquad
14. $\frac{r}{16}=16$ \qquad $\frac{d}{7}=85$
$\frac{n}{68}=383$
\qquad

Solve the equation. Decide whether the inverse operation is addition, subtraction, multiplication, or division.
15. $k-25=17$ \qquad

$$
7 x=91
$$

$\frac{z}{6}=44$ \qquad
16. $p+25=57$

$$
q-18=11
$$

$18 x=144$ \qquad
17. $\frac{b}{11}=40$ \qquad

$$
t+45=83
$$

\qquad $9 h=153$ \qquad
18. $37+g=56$ \qquad

$$
\frac{r}{33}=4
$$

\qquad $16=\frac{d}{15}$ \qquad
19. $18 j=414$ \qquad $292=f+167$ \qquad $1,620=45 m$ \qquad

Problem Solving

Solve.
20. What inverse operation would you use to solve $5 \times r=10$? Explain.

Use this table for 21-23. It shows the population (to the nearest 100 people) of four of the largest counties in the United States in 1996.

County	Population
Los Angeles	$9,127,800$
Orange	$2,636,900$
San Diego	$2,655,500$
Santa Clara	$1,599,600$

21. Which county has the least population? \qquad
22. What is the population of Santa Clara county, rounded to

Work Space.

 the nearest thousand? \qquad23. What is the median population of the 4 counties? \qquad
Solve the equation.
24. $7 x=483$ \qquad
25. $\frac{c}{17}=43$ \qquad 26. $\frac{k}{9}=12 \cdot 5$

In this lesson, you will write equations to solve word problems. The variable in the equation will represent the number you want to find.

You can solve the equation using inverse operations and use the solution of the equation to find the answer to the word problem.

(1) Understand

As you reread, ask yourself questions.

- What information do you have?

Mr. Roberts drives an average of \qquad miles per hour.

He will drive a total of \qquad miles.

- What do you need to find out?

2 Decide Choose a method for solving.
Try the strategy Write an Equation.

- Draw a circle around the equation that can be used to represent the problem.

$$
55 h=165 \quad 55+h=165
$$

Solve the equation using inverse operations.

$$
55 h=165
$$

$$
55 h \div 55=165 \div 55
$$

$h=$ \qquad The solution of $55 h=165$ is \qquad

- Check. 55h = 165
$55 \times$ \qquad $=165$

4 Look back Reread the problem. Check your answer.
Answer \qquad

- Why was it important to go back and reread the problem to check your answer?

Solve. Use the Write an Equation strategy or any other strategy you have learned.

1. In a classroom, $\mathbf{1 7}$ of the $\mathbf{2 9}$ students are girls. How many students are boys?

Think: Which equation can be used to help solve this problem?
$17-b=29 \quad 17+b=29$
3. One elephant weighed 11,205 pounds. A hippopotamus weighed 4,789 pounds less than the elephant. How much did the hippopotamus weigh?
5. How many quarters are needed to make \$7.75?
7. Place parentheses in the equation to make it true.
$16+4 \times 3-1=24$
9. A bus driver drove $\mathbf{2 5 2}$ miles in $\mathbf{7}$ hours. How many miles did she average per hour?
11. A computer company produced 250 computers on Monday. On Tuesday they produced half as many. How many did they produce during the two days?
13. An elephant eats 94 lb of plants each day. How much does it eat in a week? a month? a year?
2. A shopper bought $\mathbf{2 6}$ items for a total of $\$ 65.26$. What was the average cost of an item?

Think: Which equation can you use?

$$
26 c=\$ 65.26 \quad \frac{c}{26}=\$ 65.26
$$

4. Mariah is thinking of a 3-digit number. If you round the number to the nearest ten, you get 350 . What is the least possible number it could be?
5. Sam bought 60 bagels at $\$ 4.75$ per dozen. How much did they cost?
6. Place parentheses in the equation to make it true.

$$
\frac{8+4}{2} \times 4-3=6
$$

10. Grace had 4 quarters, 4 nickels, and 12 pennies. She then bought a notebook for $\$.95$. How much money did she have left?
11. The plane holds 368 passengers. If 263 passengers already have reservations, how many more passengers can the plane hold?
12. James said that $\mathbf{1 7}$ more than half the 486 people are wearing sneakers. How many people are wearing sneakers?
13. Write seven thousand sixty in standard form. \qquad
14. Write $\mathbf{2 , 5 0 5}, 412$ in expanded form. \qquad
15. Write 54,089 in word form.

Add, subtract, multiply, or divide.
4. $\begin{array}{r}325 \\ +898 \\ \hline\end{array}$
5. 1,064
6. 13,605
7. $1 3 2 \longdiv { 9 , 4 7 2 }$

Evaluate the expression for $n=4$.
8. $16-4 \div n$ \qquad 9. $6+(n-1) \times 2$ \qquad 10. $n \times 6+n \div 4$
\qquad

Solve the equation.
11. $b-23=31$ \qquad 12. $e \div 9=90$ \qquad
13. $z \times 6=216$ \qquad 14. $\frac{r}{5}=25$ \qquad
15. $w+116=204$ \qquad 16. $c-71=490$ \qquad

Use the precipitation table at the right.
17. Find the mean, median, mode, and range of the data.

Mean \qquad Median \qquad
Mode \qquad Range \qquad
18. Which of the measures in exercise 17 would be unchanged if the precipitation for Phoenix

Average July Precipitation (rounded to the nearest inch)	
Anchorage, AK	2
Portland, OR	1
Phoenix, AZ	1
Denver, CO	2

\qquad
\qquad

Solve.

19. Leah scored 88 and 85 points on her first two math quizzes. What equation could Leah use to determine the number of points she would need to earn on her next quiz to have an average score of 90 ? \qquad
(1) What is missing from the empty square to complete the pattern?

A P
C N
B p
D n
(2) Margarite withdrew $\$ 256$ from her savings account. She then had $\$ 228$ in the account. Which equation could be used to find how much money she started with?
F $228 \times x=256$
H $x+228=256$
G $256-x=228$
J $x-256=228$

3 Ray's scores on his first four math tests were

$$
85,83,95 \text {, and } 98 \text {. }
$$

What score does he need on the fifth test to have an average score of $\mathbf{9 0}$ on the five tests?
A 85
C 90
B 89
D 95

What do you need to do to each side of this equation to solve it?

$$
y \div 22=651
$$

$\begin{array}{ll}\text { F multiply by } 22 & \text { H divide by } y \\ \text { G multiply by } y & \text { J divide by } 22\end{array}$
(5) A theater had 85 rows. There were between 33 and 36 seats in each row. About how many seats are in the theater?
A 2,500
C 3,500
B 3,000
D 4,000

6 Some students counted the number of coins they had in their backpacks or purses.

$$
9,7,3,8,4,5,23,7,16
$$

What is the median and mode of the data set?
F 20
H 6.5
K NH
G 9.1
J 7

7 A fund-raiser raised \$29,785 for Robinson School. There are 35 classrooms that need new equipment. How much money can the school spend for each room?
A $\$ 951$
C $\$ 850$
E NH
B $\$ 851$
D $\$ 841$

8 Last year the Johnson family drove $2,064 \mathrm{mi}$ on their vacation to Canada. This year they drove $\mathbf{1 , 3 5 8} \mathbf{~ m i}$ to Florida. How much farther did the Johnson family drive last year than this year?
F $3,422 \mathrm{mi}$
H 714 mi
K NH
G $1,706 \mathrm{mi}$
J 706 mi
(9) There are 32 classrooms in a school. Fifteen of the rooms have an average of 25 students in each class. The rest have an average of 22 students. About what is the average number of students in each room?
A less than 20
D between 23 and 24
B about 21
E 25
C 22
UNIT 2 - TABLE OF CONTENTS
Decimals
Lesson Page
1 Decimals: Place Value 39
2 Comparing, Ordering and Rounding Decimals 41
3 Adding and Subtracting Decimals 43
4 Multiplying Decimals by Whole Numbers 45
5 Multiplying a Decimal by a Decimal 47
6 Problem Solving Strategy: Work Backward 49
7 Dividing Decimals by Whole Numbers 51
8 Mental Math: Multiplying and Dividing by 10,100 , and 1,000 54
9 Dividing by a Decimal 56
10 Problem Solving Application: Is the Answer Reasonable 59
11 Algebra: Expressions, Equations, and Decimals 61

- Unit 2 Review 63
- Cumulative Review \star Test Prep 64

Dear Family,

During the next few weeks, our math class will be learning about decimals. You can expect to see homework that provides practice with multiplying and dividing decimals by 10,100 , or 1,000 . Here is a sample you may want to keep handy to give help if needed.
decimal a number such as 0.5 (five tenths) and 3.67 (three and sixty-seven hundredths). A decimal is sometimes called a decimal fraction.
numerical expression a combination of one or more numbers and operations algebraic expression a combination of one or more variables, numbers, and operations
evaluate to substitute a given value for a variable

Multiplying and Dividing by 10, 100, or 1,000
Multiplying and dividing decimals by 10, 100, or 1,000 can be done without using pencil and paper.

Dividing a decimal by 10 moves the decimal point one place to the left.	Multiplying a decimal by 10 moves the decimal point one place to the right. $26.3 \times 10=263$
$26.3 \div 10=\mathbf{2 . 6 3}$	

Dividing a decimal by 100 moves the decimal point two places to the left.

$$
8.26 \div 100=0.0826
$$

Multiplying a decimal by 100 moves the decimal point two places to the right.
$8.26 \times 100=826$

Dividing a decimal by 1,000 moves the decimal point three places to the left.
$47.9 \div \mathbf{1 , 0 0 0}=\mathbf{0 . 0 4 7 9}$

Multiplying a decimal by 1,000 moves the decimal point three places to the right.
$47.9 \times 1,000=47,900$

During this unit, students will need to continue practicing multiplying and dividing decimal numbers.

Sincerely,

Each place in our base-ten number system represents a value 10 times the value of the place to its right.

Similarly, each place represents a value $\frac{1}{10}$ the value of the place to its left.

You can extend a place-value chart to include place values less than 1. A decimal point separates the ones and tenths places.

Thousands	Hundreds	Tens	Ones		Tenths	Hundredths	Thousandths	Ten-Thousandths
5	7	6	9	.	1	3	2	4

Standard form : 5, 769.1324
Expanded form : $5,000+700+60+9+0.1+0.03+0.002+0.0004$
Word form : five thousand seven hundred sixty-nine and one thousand, three hundred twenty-four ten-thousandths.

Write the word name for each number.

1. 0.1
2. 0.0018 \qquad
3. 0.60 \qquad
4. 0.03 \qquad
5. 7.01 \qquad
6. 1.304 \qquad

0.19

2.3
0.082
0.0003 \qquad
0.900 \qquad
32.005 \qquad

Write the standard form for each number.
7. thirty-nine thousandths \qquad four and six tenths \qquad
8. eight and seven hundredths \qquad twenty-three hundredths \qquad
9. twenty and three hundredths \qquad six and eight ten-thousandths \qquad
10. two hundred three thousandths \qquad two hundred and three thousandths \qquad
11. fourteen and five tenths \qquad fifty-four and four hundredths \qquad

Write each number in expanded form.
12. $678.402=$ \qquad
13. $99.008=$ \qquad
14. $455.09=$ \qquad
15. $3.83=$ \qquad
16. $300.3=$ \qquad

Write each number in standard form.
17. $70+8+0.01$ \qquad $9+0.4+0.0009$ \qquad
18. $10+3+0.6+0.05$ \qquad $50+0.1+0.02$ \qquad
19. $100+4+0.8+0.09$ \qquad $200+0.05+0.003$ \qquad
20. $400+80+8+0.9$ \qquad $40+9+0.1+0.006$ \qquad
21. $8+0.9+0.05+0.006$
$800+60+0.2$ \qquad
22. $4+0.6+0.003$ \qquad $1,000+7+0.007$ \qquad

Problem Solving

Reasoning
23. The odometer of an automobile reads $8,510.3$ miles. \qquad
25. A snail can move as fast as $0.05 \mathrm{~km} / \mathrm{h}$.
\qquad
24. The smallest insects are the feather-winged beetles, which are less than 0.2 mm long.
\qquad
26. Electricity costs $\$.035$ per kilowatt hour. \qquad

Test Prep \star Mixed Review

27 Melanie has 266 pennies in a jar. Together, she and her mother have 798 pennies. Which equation could be used to find the number of pennies her mother has?
A $p \div 266=798$
B $266 p=798$
C $266+p=798$
D $p-266=798$

28 How is this number written in standard form? Two billion, eighty-four million, six hundred two thousand, forty-nine
F $284,602,049$
G 2,846,200,049
H 2,840,602,049
J 2,084,602,049

Decimals can be shown as points on a number line. This number line shows that $0.1=\mathbf{0 . 1 0}$.

Numbers equivalent to 2: 2.02 .002 .000
3: 3.03 .003 .000

Here are two ways to compare $\mathbf{0 . 7 2}$ and $\mathbf{0 . 0 7 6}$.

720 thousandths > 76 thousandths
$0.720>0.076$

Compare. Write $<, \geqslant$, or $=$.

1. $0.8 \bigcirc$
0.35
0.5360.5604
0.40.45
2. 0.901

0.0915
0.666

0.7
0.2

0.02
3. $0.3 \bigcirc$
0.300
4.

5.5
5. 67.1

67.01
6. 7.29

7.3
7. 2.6672.677
1.04

2.4
6.8

67

4.1
$4.814 \bigcirc$
4.804
439.80

439.800

Write each group in order from least to greatest.
8. $0.5,0.7,0.1$
9. $4.70,4.07,40.7$
\qquad
6.559, 6.579, 6.569
30.67, 30.6, 30.7
628.04, 628.40, 638.04

You can round decimals the same way you round whole numbers.

If the digit to the right of the place you are rounding to is equal to or greater than 5 , round up.

Rounded to the nearest hundredth, 15.428 rounds up to 15.43 .

If the digit to the right of the place you are rounding to is less than 5 , round down.

Rounded to the nearest whole number, 15.428 rounds down to 15.

Round to the nearest whole number.
10. $15.8 \rightarrow$
11. $53.43 \rightarrow$ \qquad
37.3 \qquad
$94.5 \rightarrow$ \qquad
$74.928 \rightarrow$ \qquad

Round to the nearest tenth.
12. $8.456 \rightarrow$ \qquad
5.902 \qquad
89.48 \qquad
13. $9.04 \rightarrow$ \qquad
0.15
\rightarrow \qquad

Round to the nearest hundredth.
14. $7.459 \rightarrow$ \qquad
$99.555 \rightarrow$ \qquad
0.730
\rightarrow \qquad
15. $3.457 \rightarrow$ \qquad
$0.2951 \rightarrow$ \qquad
$40.672 \rightarrow$ \qquad

Problem Solving
 Reasoning

Solve.
16. The Paynes bought gas that cost $\$ 1.129$ for each gallon. They spent $\$ 12.00$ on gas. Is that amount a rounded or an exact total?

Test Prep $*$ Mired Review

17 Mr. Assad has 25 boxes of canned vegetables to sell. These boxes contain a total of 600 cans of vegetables. Which equation could be used to find the number of cans in each box?

A $b \times 25=600$
B $b \div 25=600$
C $b+25=600$
D $b-25=600$

18 Jason biked 2.7 miles to his friend's home from his own home, then 5.4 miles to the video
how many miles did he bike?

F 12 miles
G 13 miles
H 14 miles
J 15 miles

Add decimals the same way you add whole numbers.
Add $8.86+0.9+5.352$.

1. Estimate first.

Be sure to line up the decimal points.

$$
\begin{aligned}
& 8.86 \rightarrow 9 \\
& 0.9 \rightarrow 1 \\
&+5.352 \rightarrow+5 \\
& \hline
\end{aligned}
$$

2. Add. Write the decimal point in the sum.

3. Compare the sum and your estimate.
15.112 is close to 15. The sum is reasonable.

Subtract decimals the same way you subtract whole numbers.
Subtract 7.2 - 3.18.

1. Estimate first.

Be sure to line up the decimal points.

$$
\begin{aligned}
& 7.2 \rightarrow \\
&-3.18 \rightarrow-3 \\
& \hline
\end{aligned}
$$

2. Subtract. Write the decimal point in the difference.

3. Compare the difference and your estimate.
4.02 is close to 4. The difference is reasonable.

Add.

1. $\begin{array}{r}\$ 5.34 \\ +\$ 2.96 \\ \hline\end{array}$

4.752
+2.396

$\begin{array}{r}0.538 \\ +0.257 \\ \hline\end{array}$
0.389
0.56
$+0.257$
0.489
+

Subtract.
2. $\begin{array}{r}8.6 \\ -3.4\end{array}$
25.6
$\begin{array}{r}3.74 \\ -1.685 \\ \hline\end{array}$
$\begin{array}{r}\$ 5.30 \\ -2.64 \\ \hline\end{array}$
5.296
-3.8

Rewrite in vertical form. Then add or subtract.
3. $3.54+0.63$
$9.784-2.659$
24.6-18.8
4. $0.95-0.21$
$5.6+9.48$
$15.3+2.95$

Add or subtract.
5. 69.356
99.9
-7.281
$\begin{array}{r}0.99 \\ \hline\end{array}$
8.001
-3.456
3.8
$+2.09$
-6.52
6. $\quad 7.7$
$+0.77$
4.96
14.6
\$6.32
7.236
$\begin{array}{r}15.974 \\ \hline\end{array}$

Problem Solving
Reasoning

Decide whether you need an exact answer or an estimate to solve the problem. Then solve.
8. Manuel is writing a check for several purchases. He bought a belt for $\$ 16.99$, a hat for $\$ 19.50$, and a jacket for $\$ 43.80$. What should the amount of his check be? blouse for \$22.99 and a skirt for \$39.00.
7. Jennifer has $\$ 60$. She wants to buy a Does she have enough money?
\qquad

Quict Cheat

9. Write in standard form: forty and 44 thousandths
\qquad
Round the decimal to the place indicated.
10. 90.076; tenths place
\qquad

Find the sum or difference.
12. $\begin{array}{r}16.34 \\ +2.484 \\ \hline\end{array}$
12. $\begin{array}{r}16.34 \\ +2.484 \\ \hline\end{array}$
13. $\begin{array}{r}45.975 \\ -1.231 \\ \hline\end{array}$
13. $\begin{array}{r}45.975 \\ -1.231 \\ \hline\end{array}$
14. $\quad 0.0489$
11. 5.6998; thousandths place
15. $25.02+9.631+15.9$
\qquad

Multiply decimals the same way you multiply whole numbers.
Multiply 8×6.421.

1. Estimate the product first.	2. Then multiply.
3. Count the number of digits in decimal places in the factors. That is the number of decimal places in the product. Place the decimal point in the product.	
$\times 8$	

Use your estimate to check if your answer is reasonable.
51.368 is close to 48, so the answer is reasonable.

Place the decimal point in each product. Estimate to check that the answer is reasonable.

1. 199.6 $\times 8$
15968
$\begin{array}{r}19.96 \\ \times 8 \\ \hline 15968\end{array}$
$\begin{array}{r}1.996 \\ \times 8 \\ \hline 15968\end{array}$
2. 599.8
59.98
$\begin{array}{r}5.998 \\ \\ \hline 23992\end{array}$

3. $\begin{array}{r}250.2 \\ \times 4 \\ 10008\end{array}$
$\begin{array}{r}25.02 \\ \times 4 \\ \hline 10008\end{array}$
2.502 $\begin{array}{r}\times 4 \\ \hline 10008\end{array}$

Estimate first. Then find each product.
5. $\begin{array}{r}7.8 \\ \times 2 \\ \hline\end{array}$
3.2
7.5
0.14
25.7
$\$ 9.13$
$\begin{array}{r}7 \\ \times \\ \hline\end{array}$
$\begin{array}{r}6 \\ \times \\ \hline\end{array}$
\times
$\times 4$
6. $\begin{array}{r}12.6 \\ \times 4 \\ \hline\end{array}$
8.23
$\$ 6.23$
0.7
25.1
$\$ 7.06$
$\begin{array}{r} \\ \times \\ \hline\end{array}$
$\begin{array}{r}8 \\ \times \\ \hline\end{array}$
$\times 4$
$\begin{array}{r} \\ \times 3 \\ \hline\end{array}$
8
\times
\times
7. 0.072
$\begin{array}{r} \\ \times 4 \\ \hline\end{array}$
1.279
399.9
12.79
3.769
$\$ 80.37$
$\times 6$

$$
\begin{array}{r}
\times 2 \\
\hline
\end{array}
$$

$\times 6$
$\begin{array}{r} \\ \times 2 \\ \hline\end{array}$

8. | 0.4 | 5.2 | 0.8 |
| ---: | ---: | ---: |
| $\times 9$ | $\times 6$ | $\times 7$ |

$\$ 4.59$	2.015
$\times 2$	$\times 8$

31.7
$\begin{array}{r} \\ \times \\ \hline\end{array}$

Multiply.

9.306
$\times 0.2$
0.91

286
\$9.23
$\begin{array}{r}4.3 \\ \hline\end{array}$
$\times 51$
\$6.85
\$3.07
$\times 36$
17
\times
10. 86.4
6.5
\times
29.8
$\begin{array}{r}56 \\ \hline\end{array}$
6.73
$\times 48$
$0.523 \quad 398$
$\begin{array}{r}13.6 \\ \hline\end{array}$
0.647
$\begin{array}{r} \\ \times 382 \\ \hline\end{array}$

404
$\begin{array}{r}11.1 \\ \hline\end{array}$

674
$\begin{array}{r} \\ \times 2.06 \\ \hline\end{array}$

271
$\begin{array}{r}0.564 \\ \hline\end{array}$

Problem Solving Reasoning

Solve.
12. Kim bought 3 notebooks. Each notebook cost $\$ 4.89$. What was the total cost?
\qquad
14. What is the cost of 6 pens if each pen costs \$0.39? \qquad
13. Lee bought 6 notebooks for $\$ 4.89$ each.

What was the total cost? \qquad
15. What is the cost of a 12-minute phone call if each minute costs $\mathbf{\$ 0 . 0 8}$? \qquad

Test Prep \star Mixed Review

A apples
B grapefruit
C oranges
D pears
16 Jamal bought 3.52 pounds of oranges, 3.89 pounds of apples, 3.54 pounds of pears, and 3.25 pounds of grapefruit. He bought the least amount of which fruit?

17 Ms. Huang knows that it takes her 18 hours to build a birdhouse. Which expression shows how many hours it will take her to build n birdhouses?

F 18 - n hours
G $18 n$ hours
H $18+n$ hours
J $18 \div n$ hours

You can use what you know about whole numbers to multiply decimals.

Multiply 1.37 by 0.8 .

1. Multiply as you would with whole numbers.

$$
\begin{array}{r}
1.37 \\
\times 0.8 \\
\hline 1096
\end{array}
$$

2. Count the digits in decimal places in the factors.

1.37
$\times 0.8$
1096
:---:
10

3. Write the decimal point in the product.

$$
\begin{array}{r}
1.37 \\
\times 0.8 \\
\hline 1.096 \\
\times 3 \text { decimal } \\
\text { places }
\end{array}
$$

Place the decimal point in each product.

1. $\begin{array}{r}81.9 \\ \times 0.03 \\ \hline 2457\end{array}$
$\begin{array}{r}81.9 \\ \times 0.3 \\ \hline 2457\end{array}$
$\begin{array}{r}8.19 \\ \times 0.3 \\ \hline 2457\end{array}$
$\begin{array}{r}0.819 \\ \times 3 \\ \hline 2457\end{array}$
819
$\begin{array}{r}80.03 \\ \hline 2457\end{array}$

Multiply.

2. $\quad 1.3$ $\begin{array}{r} \\ \times 0.7 \\ \hline\end{array}$
$\begin{array}{r}8.1 \\ \times 0.2 \\ \hline\end{array}$
5.9
$\begin{array}{r}6.7 \\ \hline\end{array}$
$\begin{array}{r}5.21 \\ \times 0.8 \\ \hline\end{array}$
91.4
64.9

0.7

$\begin{array}{r}0.9 \\ \hline\end{array}$
3. $\begin{array}{r}37.01 \\ \times 0.2 \\ \hline\end{array}$
$\begin{array}{r}40.31 \\ \times 0.4 \\ \hline\end{array}$
$\begin{array}{r}30.91 \\ \times 0.3 \\ \hline\end{array}$
$\begin{array}{r}8.1 \\ \times 10.04 \\ \hline\end{array}$
$\begin{array}{r}71.9 \\ \times 0.91 \\ \hline\end{array}$
2.56
$\begin{array}{r}1.8 \\ \hline\end{array}$

Multiply.

6.

$\begin{array}{r}0.52 \\ \times 0.04 \\ \hline\end{array}$
3.8
0.02
\times
0.12
$\begin{array}{r}0.03 \\ \hline\end{array}$
1.32
$\begin{array}{r} \\ \times 0.05 \\ \hline\end{array}$
0.352
$\begin{array}{r}0.06 \\ \hline\end{array}$
7. $\quad 2.36$
$\times 0.25$
5.19
0.012
0.007
$\begin{array}{r} \\ \times 0.18 \\ \hline\end{array}$
$\begin{array}{r}0.005 \\ \times 0.9 \\ \hline\end{array}$
$\times 0.08$
0.03
\times

Multiply. Then round each product to the nearest cent.
8. $\$ 1.59$
$\begin{array}{r} \\ \times 2.5 \\ \hline\end{array}$
\$2.6 3
$\begin{array}{r} \\ \times 8.6 \\ \hline\end{array}$
\$7.8 1
$\begin{array}{r} \\ \times 4.2 \\ \hline\end{array}$
$\$ 5.73$
$\begin{array}{r} \\ \times 0.73 \\ \hline\end{array}$
\$7.16
$\begin{array}{r} \\ \times 0.91 \\ \hline\end{array}$

Problem Solving Reasoning

Solve. Round each answer to the nearest cent.

Grapes	Apples	Cherries	Pears
$\$ 1.29$ per pound	$\$.79$ per pound	$\$ 2.49$ per pound	$\$.88$ per pound

9. What is the cost of $\mathbf{1 . 3 6}$ pounds of apples? \qquad
10. What is the cost of $\mathbf{2 . 1 8}$ pounds of pears? \qquad
11. What is the cost of 1 pound of cherries and 1.25 pounds of grapes? \qquad

Test Prep \star Mixed Review

12 Keshor is planning to spend between $\$ 4.25$ and $\$ 4.75$ each week on football cards. Which is the most reasonable estimate of how much he will spend in the next 8 weeks?
A $\$ 32$
C $\$ 40$
B $\$ 36$
D $\$ 44$

13 Nine students in Mr. Hargrove's class got these scores on a book report.
83, 76, 87, 78, 82, 92, 86, 88, 82
What was the median score for these students?
F 16
H 83
G 82
J 83.8

Problem Solving Strategy:
 Work Backward

Sometimes a problem can be solved by working backward.

When working backward, you can often use inverse operations.

Problem

Scott and Benito hiked on a marked trail that began and ended at a lodge. During the first hour, they hiked 2.3 miles. During the second hour, they hiked half of the remaining distance. During the third hour, they hiked 1.4 miles. During the fourth hour, they hiked the last 0.75 miles and returned to the lodge. How long was the entire trail?

1 Understand As you reread, organize the information.

Miles Hiked	
1st hour	2.3
2nd hour	$\frac{1}{2}$ of miles left
3rd hour	1.4
4th hour	

- What do you need to find out?

2 Decide

Choose a method for solving.

Try the strategy Work Backward.

- The chart below shows how the number of miles left on the trail changes after each hour.

(3) Solve

Work backward using inverse operations.

4 Look back Check your answer. Write the answer below.

Answer \qquad

- Why is it important to go back to the problem to check your answer?

7. 'Gên Łôôk hêr wiveêk's allownânce âñ wâent to the movies. She spent $\$ 3.50$ for her ticket. Then she spent half of the remaining money on popcorn. On the way out, she bought a fruit bar for $\$ 1.25$. She had $\$.75$ left of her allowance. How much was her allowance?

Think: Which number will you use to start your computation?

Answer

3. Alec has written down a secret number. If you divide it by 2 , then subtract 1.4, and add 2.91, the result is 22.51. What is Alec's secret number?
4. Use the clues to find the number.

- To the nearest ten, the number rounds to 460.
- The sum of the digits in the hundreds and tens places is 9 .
- The digit in the tenths place is half the digit in the ones place.
- The digit in the ones place is greater than 5 and less than 7.

7. On Tuesday, Ky jogged 1.5 miles more than on Monday. On Wednesday, she jogged 2.3 miles less than on Tuesday. If she jogged 4.9 miles on Wednesday, how many miles did she jog on Monday?
8. How many seconds are in one week?
9. Evâ opênèè ả noo-feeê chêcking âccount and made an initial deposit. During the first month she deposited an additional $\$ 14.22$ and wrote checks totaling $\$ 15.36$. During the second month she deposited $\$ 35$ and wrote a check for $\$ 13.98$. She then had $\$ 65.57$ in the account. How much was Eva's initial deposit?

Think: When you work backward, will you add or subtract deposits?

Answer

4. Nicole is thinking of a secret number. If you add 15.2 to it, then subtract 2.95 , and divide by 2 , the result is $\mathbf{1 1 . 6 7 5}$. What is Nicole's secret number?
5. Use the clues to find the number.

- The sum of the digits is 13 .
- The digit in the thousandths place is 3 times the digit in the tens place.
- To the nearest ten, the number rounds to 30.
- The digit in the tenths place is one more than the digit in the hundredths place.

8. Jake brought some money to spend on his vacation. On the first day he spent $\$ 4.80$. On the second day he spent half of the money he had left. On the third day, he spent $\$ 1.85$. He then had $\$ 1$ left. How much money did Jake start with?

Divide decimals by following the same steps as when you divide whole numbers.
Divide 32.5 by 5.

1. First divide as you would whole numbers.

$$
\begin{array}{r}
65 \\
5 \longdiv { 3 2 . 5 } \\
-30 \\
\hline 25 \\
-25
\end{array}
$$

2. Then, place the decimal point in the quotient directly above the decimal point in the dividend.

$$
\begin{aligned}
& 1 \\
& \begin{array}{rl}
6.5 & 1 \text { decimal place } \\
5 \longdiv { 3 2 . 5 } & \leftarrow 1 \text { decimal } \\
\frac{-30}{25} & \text { place } \\
\frac{-25}{0} &
\end{array} .
\end{aligned}
$$

3. Check by multiplying.

$$
\begin{array}{r}
6.5 \\
\times \quad 5 \\
\hline 32.5
\end{array}
$$

Divide and check.

1. $6 \longdiv { \$. 1 2 }$
6) $\$ 2.76$
7) $\$ 34.37$
8) $\$ 10.40$
2. $2 \longdiv { 1 3 . 4 }$
$7 \longdiv { 1 . 4 }$
$5 \longdiv { 0 . 1 0 5 }$
$4 \longdiv { 2 . 4 4 }$
3. $6 \longdiv { 5 . 8 8 }$
$4 \longdiv { 7 . 3 6 }$
$3 \longdiv { 0 . 5 6 4 }$
$8 \longdiv { 7 . 5 9 2 }$
4. $6 \longdiv { 0 . 6 7 3 2 }$
$8 \longdiv { 6 8 . 3 2 8 }$
$9 \longdiv { 3 7 . 0 6 2 }$
5 $\longdiv { 5 4 3 . 2 0 }$

Sometimes you have to write one or more zeros in the dividend in order to complete the division.

Example: 4 $\longdiv { 2 . 5 }$

1. Divide the tenths.
$\begin{array}{r}0.6 \\ 4 \longdiv { 2 . 5 } \\ -24 \\ \hline 1\end{array}$
2. Write a 0 in the hundredths. Regroup and divide.
0.62
$4 \longdiv { 2 . 5 0 }$
$\begin{array}{r}-24 \\ \hline 10\end{array}$
-8
3. Write another 0 in the thousandths. Regroup and divide.

$$
\begin{array}{r}
0.625 \\
4 \longdiv { 2 . 5 0 0 } \\
-2.4 \\
\hline 10 \\
-8 \\
\hline 20 \\
-20 \\
\hline
\end{array}
$$

Divide and check.
5. $5 \longdiv { 2 . 6 }$
$4 \longdiv { 4 . 6 }$
$6 \longdiv { 5 . 7 }$
$6 \longdiv { 1 5 }$
6. $4 \longdiv { 7 . 3 }$
$8 \longdiv { 2 5 }$
$5 \longdiv { 0 . 7 5 }$
$4 \longdiv { 0 . 3 1 }$
7. $5 \longdiv { 8 . 1 }$
$4 \longdiv { 6 . 3 }$
$5 \longdiv { 0 . 7 4 }$
$4 \longdiv { 4 . 2 }$
8. $5 \longdiv { 4 . 1 8 }$
$5 \longdiv { 3 . 7 4 }$
$4 \longdiv { 5 3 . 4 }$
$2 \longdiv { 0 . 1 1 3 }$
\qquad

Divide decimals by 2-digit divisors the same way you divide by 1-digit divisors.

Divide.
9. $4 0 \longdiv { 5 3 . 6 }$
$1 6 \longdiv { 5 . 2 }$
$3 2 \longdiv { 6 . 8 0 }$
$5 6 \longdiv { 9 . 8 }$

Problem Solving

 Reasoning10. Ryan paid $\$ 51.25$ for 5 tickets to a skating show. How much was each ticket if each one cost the same amount?

Solve.

Use multiplication to check the quotient.
0.535
0.18
$\times 4280$
$\begin{array}{r}+535 \\ \hline 9.630\end{array}$
\qquad
11. Becky paid $\$.78$ for 6 pencils. Each pencil was the same price. How much did she pay for each pencil?
\qquad

Find the product.
12. 7.41
$\times 5$
13. 12.06
14. 0.115
13
\times
$\begin{array}{r}\times 27 \\ \hline\end{array}$
15. 6.04
$\begin{array}{r}1.2 \\ \hline\end{array}$
16. 3.9
17. 0.065
$\begin{array}{r}3.8 \\ \times \\ \hline\end{array}$
$\begin{array}{r}\times 0.07 \\ \hline\end{array}$

Find the quotient.
18. $5 \longdiv { 7 5 . 0 2 }$
19. $1 6 \longdiv { 8 . 4 1 6 }$
20. 25 0.0675

These examples show how you can multiply decimals by 10, 100, and 1,000.
$3.51 \times 10=35.1$
$0.63 \times 10=6.3$
$3.51 \times 100=351$
$0.63 \times 100=63$
$3.51 \times 1,000=3,510$
$0.63 \times 1,000=630$

Notice the decimal point moves to the right.

Complete.

1. To multiply a decimal by 10 , move the decimal point \qquad place(s) to the right.
2. To multiply a decimal by 100, move the decimal point \qquad place(s) to the right.
3. To multiply a decimal by $\mathbf{1 , 0 0 0}$, move the decimal point \qquad place(s) to the right.

Multiply.

4. 4.72

10
\times
0.37
65.8
$\begin{array}{r}6 \\ \times 10 \\ \hline\end{array}$
1.269
$\times 10$
31.94

10
\times
5. 3.486
$\begin{array}{r}100 \\ \hline\end{array}$
1.82

100
\times
0.714
0.700
\times
63.7

100
\times
0.9631

060
$\times 100$

These examples show how you can divide decimals by 10, 100, and 1,000.
$53.6 \div 10=5.36$
$78 \div 10=7.8$
$53.6 \div 100=0.536$
$78 \div 100=0.78$
$53.6 \div 1,000=0.0536$
$78 \div 1,000=0.078$

Notice the decimal point moves to the left.

Complete.
6. To divide a decimal by 10 , move the decimal point \qquad place(s) to the left.
7. To divide a decimal by $\mathbf{1 0 0}$, move the decimal point \qquad place(s) to the left.
8. To divide a decimal by 1,000 , move the decimal point \qquad place(s) to the left.

Divide.

9. $1 0 \longdiv { 7 . 4 }$
$1 0 \longdiv { 1 . 8 6 }$
$1 0 \longdiv { 2 3 . 7 }$
$1 0 \longdiv { 0 . 1 6 3 }$
10. $1 0 0 \longdiv { 2 8 . 3 }$
$1 0 0 \longdiv { 3 1 }$
$1 0 0 \longdiv { 6 . 2 9 }$
$1 0 0 \longdiv { 0 . 5 6 }$
\qquad

Complete each table.
11.

	$\times 10$	$\times 100$	$\times 1,000$
0.347	3.47	34.7	347
4.56			
0.307			
89.47			
0.048			
0.604			
2.5			
0.03			
54.1			
0.7			

12.

	$\div 10$	$\div 100$	$\div 1,000$
47.2			
58.34			
718.6			
3.029			
49			
130			
417			
200			
0.05			
26.3			

Problem Solving

 Reasoning13. $\mathbf{1 0 0}$ centimeters $=1$ meter

cm	m
325	
26.5	
	4.75
	7.4
1.5	
	12.6

14. $\mathbf{1 , 0 0 0}$ meters $=\mathbf{1}$ kilometer

m	km
5,826	
741.9	
	1.6
	0.745
25.1	
	3

Test Prep x Mixed Review

At Rice Brook School, 375 students ride to school on 8 buses. About how many students are on each bus?

A 30
B 40
C 50
D 60

In 1996, there were 1,599,604 people in Santa Clara County. There were 213,277 people in Placer County. How many more people lived in Santa Clara County?

F 386,327
G $1,386,327$
H 1,386,337
J 1,812,881

Look at this example of dividing whole numbers. Notice that if you multiply the divisor and the dividend by the same number, the quotient is not changed.

4
$2 \longdiv { 8 }$
Multiply the divisor and the dividend by 10.

$$
2 0 \longdiv { 8 0 }
$$

Multiply the divisor and the dividend by 100.

$$
2 0 0 \longdiv { 8 0 0 }
$$

Use this fact to divide decimals by decimals. Multiply the divisor and the dividend by the same number, so that the divisor is a whole number.

To divide 8.06 by 2.6 , multiply the divisor and the dividend by 10.

To divide 2.61 by 0.003 , multiply the divisor and the dividend by 1,000 .

Divide. Draw arrows like the ones shown above to show the new position of each decimal point.

1. $0 . 7 \longdiv { 4 . 3 4 }$
$0 . 8 \longdiv { 0 . 0 4 8 }$
$0 . 9 \longdiv { 0 . 0 3 6 9 }$
$0 . 3 \longdiv { 1 7 . 7 }$
2. $0 . 0 7 \longdiv { 4 . 6 2 }$
$0 . 0 8 \longdiv { 0 . 2 7 2 }$
$0 . 0 5 \longdiv { 1 4 . 2 }$
$0 . 0 4 \longdiv { 0 . 1 9 2 }$
3. $0 . 0 0 2 \longdiv { 0 . 6 1 4 }$
$0 . 0 0 9 \longdiv { 2 . 1 6 }$
$0 . 0 0 7 \longdiv { 7 . 2 8 }$
$0 . 0 0 5 \longdiv { 0 . 5 1 5 }$

Sometimes you need to find a quotient rounded to a certain place.
Divide 3.478 by 7.1 and round the quotient to the nearest hundredth.

1. Divide to the thousandth place, so you can round the quotient to the nearest hundredth.

$$
\begin{array}{r}
0.489 \\
7 . 1 \longdiv { 3 . 4 7 8 0 } \\
-2.84 \\
\hline 638 \\
-568 \\
\hline 700 \\
-639 \\
\hline 61
\end{array}
$$

2. Round the quotient to the nearest hundredth.

$$
0.489 \quad \longrightarrow \quad 0.49
$$

Divide. If a quotient contains thousandths, round to the nearest hundredth.
4. $5 . 5 \longdiv { 1 . 2 9 }$
$0 . 6 \longdiv { 6 . 4 8 }$
$1 . 4 1 \longdiv { 4 . 5 9 1 }$
$7 . 3 \longdiv { 2 0 . 8 3 }$
5. $3 . 2 \longdiv { 6 . 5 }$
$0 . 2 \longdiv { 4 1 6 . 8 }$
$0 . 6 5 \longdiv { 5 6 8 . 5 5 }$
$1 . 5 2 \longdiv { 4 . 1 6 }$
6. $0 . 6 7 \longdiv { 3 . 6 4 3 }$
$0 . 9 \longdiv { 1 8 . 9 9 }$
$9 . 5 \longdiv { 0 . 8 2 6 5 }$
$0 . 0 9 \longdiv { 3 4 . 2 8 3 }$
7. $4 . 5 \longdiv { 6 3 . 4 9 }$
$0 . 5 4 \longdiv { 4 . 4 3 3 }$
$0 . 0 8 \longdiv { 7 . 2 2 1 }$
$0 . 0 7 \longdiv { 3 6 . 4 }$

When you divide a whole number by a decimal, you follow the same steps as when you divide a decimal by a decimal.

To divide 117 by 0.09, multiply the divisor and the dividend by 100.

$0 . 0 9 \longdiv { 1 1 7 . 0 0 }$ $\frac{-9}{27}$ $\frac{-27}{000}$

Divide 32 by 4.6. Round the quotient to the nearest hundredth.

Divide. Round each quotient to the nearest hundredth, when necessary.
8. $0 . 3 2 \longdiv { 2 5 }$
$0 . 3 5 \longdiv { 7 1 }$
$0 . 0 3 6 \longdiv { 2 7 }$
$0 . 4 1 \longdiv { 1 , 1 0 8 }$
9. $0 . 7 6 \longdiv { 2 6 5 }$
$0 . 3 8 \longdiv { 3 2 2 }$
$8 . 5 \longdiv { 1 5 , 2 1 5 }$
$1 . 2 \longdiv { 2 5 , 8 0 1 }$

Problem Solving Reasoning
10. If a car travels 270 kilometers in 4.5 hours, what is its average rate of speed in kilometers per hour?
11. Roger won the 75 -meter race in 8.1 seconds. What was his speed in meters per second? Round the answer to the nearest hundredth.

Test Prep \star Mixed Review

12 Eva has a small dog that weighs 14.85 pounds. How is this number written in words?

A fourteen and eighty-five hundredths
B fourteen and eighty-five tenths
C fourteen and eighty-five thousandths
D fourteen and eighty-five ten thousandths

13 The Pasta Company uses boxes that are 5.85 inches tall. Which expression could you use to find how tall p boxes would be stacked together?
F $5.85 \div p$
H $5.85+p$
G $5.85 \cdot p$
J $5.85-p$

Sometimes when you are solving a division problem, the answer has a remainder. You need to go back to the problem and decide how to use the remainder to write the answer.

- Sometimes you will write the remainder as a whole number. Then you need to decide whether to include the remainder in your answer, drop the remainder, or round your answer to the next whole number.
- Sometimes you need to write the quotient as a fraction.
- Sometimes you need to write the quotient as a decimal.

Tips to Remember:

$\begin{array}{llll}\text { 1. Understand } & \text { 2. Decide } & \text { 3. Solve } & \text { 4. Look back }\end{array}$

- Try to remember a real-life situation like the one described in the problem. What do you remember that might help you find a solution?
- Ask yourself: Does the answer use the remainder correctly?

Solve.

1. The librarian has 329 extra books that she wants to divide equally among 3 classto each classroom?

Think: Do fractions or decimals make sense in this situation? Explain.

Answer

\qquad
3. How long will it take to drive $\mathbf{1 2 5}$ miles driving at an average speed of $\mathbf{5 0}$ miles per hour?

Think: How can you express the remainder?
\qquad
\qquad

Answer

\qquad
2. Eight people share dinner at a restaurant. The total bill including tax and tip is $\$ 98$. If they divide the bill evenly, what is each person's share?

Think: Do fractions or decimals make sense in this situation? Explain.

Answer \qquad
4. A van holds 15 passengers. How many vans are needed to transport 50 passengers?

Think: If $\mathbf{5 0}$ is not evenly divisible by 15, what will you do about the vans?

Answer

\qquad

Solve.

5. Six students shared 9 mini pizzas. Each student ate the same amount. How many pizzas did each eat?
6. Paper plates come in packages of 8. How many packages are needed to have 138 plates?
7. Rogerio bought 75 blueberry muffins. How many dozen was that?
8. The batting average of a baseball player is calculated by dividing the number of "hits" by the number of "at bats." It is written as a decimal rounded to the nearest thousandth. In 1998 Larry Walker of the Colorado Rockies had 165 hits out of 454 at bats. What was his batting average?
9. The buttons Pam wants to buy come in packages of 4 . She needs 10 buttons for a coat she is making. How many packages should she buy?
\qquad

Extend Your Thinking
15. Explain the method you used to solve problem 6.
\qquad
\qquad
\qquad
\qquad
6. T-shirts are on sale. You can buy 3 for $\$ \mathbf{2 5}$. How much will one T-shirt cost?
8. Each round table can seat up to 12 people. How many round tables are needed to seat 185 people?
10. How many 33-cent stamps can you buy for \$5.00?
12. In 1998, Bernie Williams of the New York Yankees had 169 hits out of 499 at bats. His teammate Paul O'Neil had 191 hits out of 602 at bats. Which player had the higher batting average that year? How much higher was his average?
14. Four brothers and sisters are sharing the cost of a gift. They bought flowers for $\$ 25.95$ and a vase for $\$ 5.85$. How much is each person's share?
\qquad
16. Go back to problem 8. Did you round your answer to the nearest whole number? Why or why not?
\qquad
\qquad
\qquad

You have learned about expressions with whole numbers.
You can write and evaluate expressions with decimals the same way you do with whole numbers.

Word Expression: one tenth more than six tenths
Numerical Expression: $\quad 1.25+(2 \times 6.5)$
Algebraic Expression: $\quad n \div 0.7$

Write each expression in words.

1. $6.13-0.9$ \qquad
2. $n+1.1$ \qquad

Write a numerical or algebraic expression for each word expression.
3. Seven tenths less than the product of four and two \qquad
4. Seventy-three hundredths added to the quotient of eight divided by some number

Evaluate each expression. $n=3.5, \boldsymbol{t}=0.25$
5. $n+7.48$ \qquad $t+43.32$
$t+0.75$ \qquad $n+t$ \qquad
6. $n-0.48$ \qquad 9.13 - t \qquad $n-0.95$ \qquad $n-t$ \qquad
7. $n \cdot 6.75$ \qquad $6.78 t$ \qquad $5(n+t)$ \qquad nt \qquad
8. $\frac{n}{t}$ \qquad
$16.8 \div n$ \qquad
$t \div 0.05$ \qquad
$\frac{n+t}{5}$ \qquad
9. $23.8 \times(n-t)$ \qquad $4.5 n-5.9$ \qquad $(n+t) \div t$
$\frac{5.5}{t}+3.44$
10. $n+t+n$ \qquad
$\frac{n-t}{t}$ \qquad
$(t \div t)+n$
$\frac{n+t}{10}$

You can use what you know about solving equations with whole numbers to solve equations with decimals. Use inverse operations.

These examples are solved for n.

$$
\begin{aligned}
n-5.2 & =8.1 \\
n-5.2+5.2 & =8.1+5.2 \\
n & =8.1+5.2 \\
n & =13.3
\end{aligned}
$$

$$
\begin{aligned}
n+17.5 & =23.8 \\
n+17.5-17.5 & =23.8-17.5 \\
n & =23.8-17.5 \\
n & =6.3
\end{aligned}
$$

$$
n \times 25.5=255
$$

$$
n \times 25.5 \div 25.5=255 \div 25.5
$$

$$
n=255 \div 25.5
$$

$$
n=10
$$

$$
\begin{aligned}
n \div 15 & =12.3 \\
n \div 15 \times 15 & =12.3 \times 15 \\
n & =12.3 \times 15 \\
n & =184.5
\end{aligned}
$$

Solve each equation.
11. $a+2.04=9.1$ \qquad

$$
r-5.5=7
$$ $n \times 2.1=23.1$ \qquad

12. $h-6.05=33.6$ \qquad

$$
\frac{c}{1.25}=10
$$

$$
q+9.2=12.4
$$

\qquad
13. $x-7.5=100$ \qquad

$$
z \div 0.14=2.8
$$

$n \times 3=309.3$ \qquad
14. $b \div 0.04=18$
$d \times 5=50.5$ \qquad
$w+87.91=96.4$ \qquad

Auick Gheots

Find the product or quotient.
15. 7.562
$\begin{array}{r} \\ \times 10 \\ \hline\end{array}$
16. $\$ 9.97$

100
\times
17. $1 0 0 \longdiv { 4 . 4 3 2 }$
20. $2 . 5 \longdiv { 0 . 0 5 5 }$
18. $8 \longdiv { 9 4 }$
19. $1 . 2 \longdiv { 4 . 2 3 3 }$

Work Space.
\qquad
\qquad

Write the standard form for each number.

1. two hundred six thousandths \qquad 2. $400+9+0.05+0.009$ \qquad

Compare. Write $\geqslant,<$, or $=$.
3. 0.60.28
4. 14.30

14.300
5. 2.7
 11.0

Round 25.753 to the given place.
6. nearest whole number \qquad 7. nearest tenth \qquad 8. nearest hundredth
\qquad

Write each group in order from greatest to least.
9. $50.9,5.90,59.0$ \qquad 10. 7.07, 7.70, 7.707 \qquad

Add, subtract, multiply, or divide.
11. 0.217
$+3.916$
16. 8.04
12. 4.2
-2.85
13. $\quad 15.05$
14. $\$ 104.99$
15. 9.4
$-\$ 92.50$
$+0.929$
17. 23.6 $\begin{array}{r} \\ \times 0.52 \\ \hline\end{array}$
18. $9 \longdiv { 2 . 5 2 }$
19. $1 2 \longdiv { 4 0 8 . 8 4 }$
20. $0 . 3 \longdiv { 0 . 0 2 7 9 }$

Evaluate each expression when $a=0.4$ and $b=0.75$.
21. b - a
22. $a+17$
23. $a \times b$
24. $2.03+(8 \div a)$

Solve each equation.
25. $n \times 5=7.5$ \qquad 26. $h \div 0.3=10.1$ \qquad 27. $133.6+p=209.04$ \qquad

Solve.
28. To the nearest tenth, a number rounds to 1.5 . To the nearest whole number, it rounds to 1 . The digit in the hundredths place is twice as great as the digit in the tenths place. The number has no places greater than ones or less than hundredths. For what number is this true? \qquad
29. Each banquet table in a large room can seat up to 16 people. What is the minimum number of tables that would be needed to seat 200 people? Explain.
(1) Tran buys 3 packages of raisins. Each package costs $\$ \mathbf{2 . 2 9}$. How much change should he get from a $\mathbf{\$ 1 0}$ bill?

A Eight $\$ 1$ bills, 3 quarters, 1 nickel, and 1 penny

B Seven $\$ 1$ bills, 2 quarters, 2 dimes, and 1 penny

C Four $\$ 1$ bills, 2 dimes, and 3 pennies
D Three $\$ 1$ bills, 2 dimes, and 3 pennies
E Three $\$ 1$ bills, 1 dime, and 3 pennies
(2) Rhonda is planning a race that has three parts. The first part is $\mathbf{1 1 8 . 9}$ meters long. The second part is 152.68 meters long. The third part is $\mathbf{2 0 8 . 4 2}$ meters long. How long is the whole race?
F 361.1 m
H 480 m
K NH
G 479.9 m
J $4,800 \mathrm{~m}$
(3) Miguel ran his part of a relay race in $\mathbf{1 2 . 8 6 8 5}$ seconds. What is that decimal rounded to the nearest hundredth?
A 12.86
C 12.869
E NH
B 12.868
D 12.87
(4) Elizabeth bought 19.5 feet of ribbon. One foot of ribbon cost $\$ 0.36$. How much did Elizabeth's ribbon cost?
F $\$ 70.20$
H $\$ 7.20$
K NH
G $\$ 19.86$
J \$7.02
(5) What do you need to do to each side of this equation to solve it?

$$
m-2,436.876=234.90
$$

A Add $2,436.876$
B Add m
C Subtract 2,436.876
D Subtract m

6 The Hilltop School is having a raffle. The school needs $\$ 3,166.25$ to buy computers. Tickets cost $\$ 1.25$. Which equation could you use to find how many tickets the school needs to sell?

F $3,166.25+t=1.25$
G $3,166.25 \div t=1.25$
H 3,166.25 $-t=1.25$
J $3,166.25 \times t=1.25$

7 The mass of 3 planets relative to Earth are shown in the table. List planets from least to greatest mass.

Planet	Mass
Mercury	0.054
Venus	0.81
Earth	1.000
Mars	0.1

A Mercury, Venus, Earth, Mars

C Mars, Mercury, Venus, Earth
D Mercury, Mars, Venus, Earth
UNIT 3 - TABLE OF CONTENTS
Number Theory and Fraction Concepts
Lesson Page
1 Divisibility Rules 67
2 Factors and Prime Numbers 69
3 Exponents 71
4 Prime Factorization 73
5 Finding the Greatest Common Factor 75
6 Multiples and Least Common Multiple 77
7 Problem Solving Strategy: Make a List 79
8 Writing Equivalent Fractions 81
9 Simplest Form 83
10 Comparing Fractions 85
11 Fractions, Mixed Numbers, and Decimals 87
12 Terminating and Repeating Decimals 89
13 Problem Solving Application: Use a Bar Graph 91

- Unit 3 Review 93
- Cumulative Review \star Test Prep 94

Dear Family,

During the next few weeks, our math class will be learning about number theory. You can expect to see homework that provides practice with exponents. Here is a sample you may want to keep handy to give help if needed.

We will be using this vocabulary:
base (of an exponent) the number that is raised to a power
exponent a number that tells how many times a base number is to be used as a factor
prime number a counting number greater than 1 that has only two distinct factors, itself and 1
greatest common factor (GCF) the greatest number that is a common factor of two or more given numbers least common multiple (LCM) the least nonzero number that is a common multiple of each of two or more given numbers

Exponents

An exponent tells how many times a base is used as a factor.
base $\rightarrow \mathbf{2}^{\mathbf{6}}$ exponent \quad Read: Two to the sixth power.

$$
2^{6}=2 \times 2 \times 2 \times 2 \times 2 \times 2=64
$$

base $\rightarrow 5^{4} \leftarrow$ exponent \quad Read: Five to the fourth power.
$5^{4}=5 \times 5 \times 5 \times 5=625$
base $\rightarrow \mathbf{1 0}^{\mathbf{2}} \leftarrow$ exponent \quad Read: Ten to the second power, or ten squared.

$$
10^{2}=10 \times 10=100
$$

base $\rightarrow 8^{\mathbf{3}} \leftarrow$ exponent \quad Read: Eight to the third power, or eight cubed.

$$
8^{3}=8 \times 8 \times 8=512
$$

During this unit, students will need to continue to practice simplifying numerical and algebraic expressions that contain exponents.

Sincerely,

Knowing divisibility rules can help you find factors and common factors.

A number is divisible by $\mathbf{2}$ if the last digit is $\mathbf{0 , 2 , 4 , 6 ,}$ or $\mathbf{8}$.
A number is divisible by $\mathbf{5}$ if the last digit is $\mathbf{0}$ or $\mathbf{5}$.
A number is divisible by $\mathbf{1 0}$ if the last digit is $\mathbf{0}$.

Numbers that are divisible by 2 are called even numbers.
Numbers that are not divisible by $\mathbf{2}$ are called odd numbers.

Place a \checkmark by the numbers that are divisible by 2,5 , or 10.
1.

	2	5	10
56			
40			
85			
32			

	2	5	10
120			
128			
125			
150			

2. Circle the even numbers in the tables above.

A number is divisible by $\mathbf{3}$ if the sum of the digits is divisible by 3.
A number is divisible by 9 if the sum of the digits is divisible by 9 .

$$
\begin{array}{crl}
51 & \rightarrow 5+1=6 & 6 \div 3=2
\end{array} \quad \begin{aligned}
& \text { Therefore, } 51 \text { is divisible by } 3 . \\
& 846
\end{aligned} \rightarrow 8+4+6=18 \quad 18 \div 9=2 \quad \text { Therefore, } 846 \text { is divisible by } 9 .
$$

Place a \checkmark by the numbers that are divisible by 3 or 9 .

3.
3 57 63 111 5,391

	3	9
87		
81		
54,108		
31,479		

A number is divisible by $\mathbf{4}$ if the last $\mathbf{2}$ digits are divisible by 4.
A number is divisible by 6 if it is divisible by both 2 and 3.

Place a \checkmark by the numbers that are divisible by $4,2,3$, or 6.

	4	2	3	6
116				
48				
123				
114				

	4	2	3	6
136				
24				
140				
138				

Place a \checkmark by the numbers that are divisible by $2,3,4,5,6,9$, or 10.
5.

	2	3	4	5	6	9	10
30							
28							
91							
135							
153							
180							
132							

Problem Solving Reasoning

Solve.
Write a rule for deciding whether or not a number is divisible by
6. 15 \qquad
7. 18 \qquad

Test Prep * Mired Review

8 Jeanette bought 2 packs of invitations. Each pack had 24 cards. She used 32. Which equation could you use to find how many invitations (l) she had left?
A $(2 \cdot 24)-32=l$
C (2.32) $-24=l$
B $2 \cdot 24+32=l$
D $(2 \cdot 32)+24=l$
9) Which number is indicated on the number

F 2.33
H 2.23
G 2.3
J 2.03

Factors are numbers that are multiplied to obtain a product. Every counting number (1, 2, 3, . . .) has at least one pair of factors.

A factor of a number is also a divisor of that number. For example, because $6=3 \times 2$ and $6=1 \times 6,1,2,3$, and 6 are both factors and divisors of 6 .

Complete by writing each product using as many different pairs of factors as possible.
1.

3

4

5

6
7

2.

11
12
13
14

18
19
20
21
3.

| 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |
| | | | | | | |

Some of the numbers given in exercises 1-3 can be written as the product of only one pair of factors, itself and 1.

These numbers are 1,2,3,5,7,11,13,17, and 19.
If a counting number greater than 1 has only one pair of factors, itself and $\mathbf{1}$, then it is called a prime number or a prime.

The number 1 is neither prime nor composite.

A counting number that has factors other than itself and $\mathbf{1}$ is called a composite number.

Complete by writing each product using as many different pairs of factors as possible. Circle the primes.
4.

23			25		3	
					3	

In Ancient Greece, a man named Eratosthenes (ehr uh TAHS thuh neez) invented a way to find all the prime numbers between 1 and 100. This is his method. It is called the Sieve of Eratosthenes.

1. Cross out 1 because 1 is not prime.
2. Circle $\mathbf{2}$ because $\mathbf{2}$ is prime. Cross out all multiples of 2.
3. Go to the next number that is not crossed out. Circle the 3. Then cross out all multiples of 3.
4. Repeat step 3 until all the numbers up to and including 100 are either circled or crossed out.

THE SIEVE OF ERATOSTHENES									
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Complete.

5. List all the primes less than 100. \qquad

Problem Solving Reasoning

Write True or False. Give an example to prove your answer.
6. Only odd numbers are prime.
\qquad
8. Some numbers greater than 100 are prime. \qquad
10. One is a factor of every number.
\qquad
7. When you add two prime numbers, the sum is never prime.
9. When you multiply two prime numbers, the product is always composite.
11. Two is a factor of every number.
\qquad

Test Prep \times Mixed Review

12) A game company is making up a new card game. For each game, the players need an equal number of cards with none left over. Which number of cards could be used so that 2,3 , or 4 people could play?
A 26
C 42
B 36
D 54

13 What is the inverse operation of multiplying by 25 ?

You can use an exponent to express multiplication when the same factor is repeated.
$2 \cdot 2 \cdot 2 \cdot 2$ can be written 2^{4}.
This is read "two to the fourth power."

Remember, the dot means multiplication.

In this example, 2 is the base and 4 is the exponent or power.

Write in standard form.

1. $4^{2}=$ \qquad $=16$ \qquad $=$ \qquad
2. $6^{3}=$ \qquad $=$ \qquad
3. $9^{2}=$ \qquad $=$ \qquad
4. $3^{3}=$ \qquad $=$ \qquad
\qquad
5. $7^{2}=$ \qquad $=$ \qquad
$4^{3}=$ \qquad $=$ \qquad
6. $3^{4}=$ \qquad $=$ \qquad $2^{6}=\square=$ $=$ \qquad

Write in exponent form.
7. $6 \cdot 6 \cdot 6=$
8. $3 \cdot 3=$ \qquad
9. $5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5=$ \qquad

Simplify each expression.
10. $2^{4} \cdot 3=$
11. $2^{3} \cdot 3^{2}=$
12. $3^{3} \cdot 5=$
13. $2^{2} \times 3^{2}=$

Write True or False.

\qquad $=$ \qquad
$3 \cdot 5^{2}=$ \qquad $=$
\qquad
\qquad $=$ \qquad $2 \cdot 7^{2}=$ \qquad $=$ \qquad
\qquad $=$ \qquad $5^{2} \cdot 7=$ \qquad $=$ \qquad
\qquad $=$ \qquad $2^{5} \times 3=$ \qquad $=$ \qquad

14. $3^{2}=6$

\qquad

$$
4^{2}=16
$$

$9^{2}=18$
$10^{3}=1,000$
15. $5^{3}=15$ \qquad $2^{4}=16$ \qquad $4^{4}=166$
$2^{5}=64$
16. $2 \cdot 5^{2}=100$
$\mathbf{3}^{2} \cdot \mathbf{4}=\mathbf{2 4}$ \qquad $2^{2} \times 2^{2}=16$
$3^{3} \cdot 5^{2}=90$
17. $3^{2} \cdot 5^{2}=225$
$2^{2} \cdot 3^{3}=36$
$5 \times 7^{2}=245$
$2^{2} \times 9^{2}=334$

When expressions contain exponents, you can use the order of operations to simplify the expression.

Order of Operations

1. Simplify inside parentheses.
2. Simplify powers.
3. Multiply and divide from left to right.
4. Add and subtract from left to right.

Simplify $0.3 \times 6+(8-5)^{2}$
$0.3 \times 6+\left(\frac{1}{2}\right)^{2}$
\downarrow
$0.3 \times 6+9$
\downarrow
$1.8+9$
10.8

Simplify. Use the order of operations.
18. $50 \div 0.5^{2}$ \qquad $6^{2}-9$ \qquad $(4+5)^{2}$ \qquad $(7+3)^{2} \div 0.25$ \qquad
19. $6^{2}-2 \times 6$ \qquad $0.2^{3}+8 \div 4$ \qquad
$7^{2}-4^{2} \times 3$ \qquad
$9-(4-1)^{2}$
\qquad

Insert parentheses to make each equation true.
20. $2 \times 3+6=18$
$20 \times 4.5-2=50$
$4+4^{2} \div 5=4$
$2 \times 6^{2}-8=56$
21. $6+8 \div 2=10$
$12+10 \div 11=2$
$40 \div 4 \times 2=20$
$30+0.9 \div 3=10.3$

Problem Solving Reasoning

Compare. Write $>,<$, or $=$.
22. $(9 \div 3)^{2}+(15-13)^{3}$$9 \div 3^{2}+(15-13)^{3}$
23. $(7+3)^{2} \div(3+2)^{2}$$7^{2}+3^{2} \div 3^{2}+2^{2}$

Quick Check

Is the number divisible by $2,3,4,5,6,9$, or 10 ? Write each of the numbers that apply.
24. 375
\qquad
List all the factors of the number.
27. 32 \qquad 28. 135 \qquad 29. 124 \qquad

Evaluate the expression. Use the order of operations.
30. 9^{3}
31. $7+20^{2}$
32. $3(12-8)^{4}$

Counting numbers that are greater than 1 and are not prime are called composite numbers. Renaming a composite number as a product of prime factors is called prime factorization.

You can use a factor tree to show the prime factorization of a number. A factor tree is complete when the bottom numbers are prime.

In each factor tree for 24, the bottom row contains the same prime factors in a different order. However, the prime factorization of a number should be written in order from least to greatest.

The prime factorization of 24 is $2 \cdot 2 \cdot 2 \cdot 3$ or $2^{3} \cdot 3$.

Use exponents to write each prime factorization in order from least to greatest. Draw a factor tree to help you.
1.

81
2. 100 48 34

3. 32 \qquad
4. 31 \qquad
5. 99

29 \qquad
6. 77

55 \qquad
7. 91 108 \qquad
8. 73 103 \qquad

Complete.

	Pair of Factors	Prime Factorization	Prime Factorization in Exponent Form	Prime Factor(s)
9. $18=$				
10. $20=$				
11. $25=$				
12. $32=$				
13. $36=$	——			
14. $42=$				
15. $75=$				
16. $120=$				

List all the factors of each number.
17. 10 18
18. 30 37 \qquad
19. 42 51

Mest Prep 4 Misedieview

(21) What fraction is another name for $6 \frac{2}{3}$?
A $\frac{18}{30}$
C $\frac{20}{3}$
B $\frac{9}{3}$
D $\frac{21}{3}$
(21) What is the value of $5 x^{3}$ when $x=2$?
F 30
H 500
G 40
J 1,000

The common factors of two or more numbers are all the factors that appear in the lists of factors for each number. The greatest common factor (GCF) is the greatest of these common factors.

Factors of 18: 1, 2, 3, 6, 9, 18
Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30
The common factors of 18 and 30 are 1,2,3, and 6.

When 1 is the only common factor, the GCF is $\mathbf{1}$.

The greatest common factor (GCF) of 18 and 30 is 6.

Complete.

You can use prime factorization to find the GCF of two or more numbers.

Find the GCF of 60 and 24.

1. Write the prime factorization of each number.
$60=$ (2) \cdot (2) \cdot (3) $\cdot 5$
2. Circle the factors common to both groups.
3. Find the product of the least power of the common factors.
$24=$ (2) (2) 2 -(3)
GCF: $\mathbf{2}^{2} \cdot 3=12$
The greatest common factor (GCF) of $\mathbf{6 0}$ and 24 is 12.
Use the method above to find the GCF.
Circle the factors common to both groups.
4. $5=$ \qquad
$20=$ \qquad
GCF = \qquad
5. $12=$ \qquad
$18=$ \qquad
6. $14=$ \qquad
$18=$ \qquad
GCF = \qquad
7. $20=$ \qquad
$24=$ \qquad
$32=$ \qquad
GCF = \qquad
8. $25=$ \qquad
$30=$ \qquad
GCF = \qquad
9. $15=$ \qquad
$18=$ \qquad
$36=$ \qquad
GCF = \qquad

Problem Solving

 Reasoning15. Vivian is making key chains with beads. She wants each key chain to have the same number of beads. She has 12 blue beads and 21 yellow beads. What is the greatest number of key chains she can make that are exactly the same?

Test Prep $*$ Mixed Review

16. A high school band marches in a formation of rows and columns. Each row or column has more than one musician. All rows have the same number of musicians, and so do all columns. Which number of musicians can march at one time?
A 47
C 53
B 51
D 61

17 Sue bought 3 bags of dog food for $\$ 2.89$ each. Which equation can be used to find the amount of change (c) she should get from $\mathbf{\$ 1 0}$?
$\mathbf{F}(3 \cdot 2.89)+c=10$
G $(3 \cdot 2.89)-c=10$
$\mathbf{H} c+10=2.89 \div 3$
J $c-10=2.89 \div 3$
\qquad

The common multiples of two or more numbers are all the numbers that appear in both lists of multiples for each number. The least common multiple (LCM) is the least of these common multiples.

Find the LCM of 8 and 12.
Multiples of 8: 8, 16, 24, 32, 40, 48, 56, 64, 72, . . .
Multiples of 12: 12, 24, 36, 48, 60, 72, 84, . . .
The common multiples of 8 and 12 are $24,48,72, \ldots$
The least common multiple (LCM) of 8 and 12 is 24 .

Complete.

You can use prime factorization to find the LCM of two or more numbers.

Find the LCM of 12 and 16.

1. Write the prime factorization of each number.
$12=2^{2}-3$
2. Circle the greatest power of each different prime factor.
$16=24$
3. $10=$ \qquad
$8=$ \qquad
$6=$ \qquad
LCM: \qquad
\qquad $15=$ \qquad
LCM: \qquad
4. $18=$ \qquad
5. $4=$ \qquad $5=$ \qquad
LCM: \qquad
$15=$ \qquad
$12=$ \qquad
LCM: \qquad
6. $4=$ \qquad
. 5
\qquad
$8=$ \qquad
LCM: \qquad
7. Find the product of the greatest powers.

Use the method above to find the LCM.
Circle the greatest power of each different prime factor.
9. $10=$ \qquad
$8=$ \qquad
LCM: \qquad
10. $9=$

LCM: $\mathbf{2}^{\mathbf{4}} \cdot \mathbf{3}=48$

Problem Solving
Reasoning
Solve.
15. Mike can buy red push pins in packages of 24 and yellow push pins in packages of 36 . What is the least number of each color he must buy in order to have the same number of each color? How many packages of each is this?

(${ }^{\text {Quick Checks }}$

Write the factorization of the number or write prime.
16. 24 \qquad
17. 31 \qquad
18. 225 \qquad

Write the greatest common factor of the two numbers.
19. 6,8 \qquad 20. 24,36 \qquad 21. 15,16 \qquad

Write the least common multiple of the two numbers.
22. 6, 8 \qquad
23. 30,45 \qquad 24. 4, 9 \qquad

Some problems can be solved by making one or more organized lists.

Problem

I'm thinking of a number. It is less than 20. When you divide my number by 3 , the remainder is 1 . When you divide my number by 5 , the remainder is 2 . What is my number?

(1) Understand

As you reread, ask yourself questions.

- How can you find numbers which when divided by 3 have a remainder of 1 ?

Add 1 to the multiples of 3.

- How can you find numbers which when
divided by 5 have a remainder of 2 ? \qquad

2 Decide Choose a method for solving.

Try the Make a List strategy.

- First list numbers (less than 20) which when divided by 3 have a remainder of 1.

Multiples of 3	3	6	9	12	15	18
Multiples of 3 plus 1	4	7	10	-	-	-

- Then list numbers (less than 20) which when divided by 5 have a remainder of 2.

Multiples of 5	5	10	15
Multiples of 5 plus 2	-	-	-

(3) Solve

Look for the number that is in both lists.
The only number in both lists is \qquad

4 Look back Check your answer. Write the answer below.
Answer \qquad

- Why was it helpful to list the numbers in order?

Solve. Use the Make a List strategy or any other strategy you have learned.

1. Steve is thinking of a number. It is less than 40 . When you divide it by 6 , the remainder is 5 . It is not a prime number. What is Steve's number?

Think: What numbers less than 40 are 5 more than a multiple of 6 ?

Answer

3. Write the number that comes next in this sequence.
3.5, 4.7, 5.9, 7.1, \qquad
4. What is the greatest possible 3-digit number for which the sum of the digits is 10 ?
5. List all 2-digit numbers for which the sum of the digits is 6 .
6. What is the tenth number in the sequence?

$$
1,2,4,7,11, \ldots
$$

11. Kunio bought a pair of blue shorts, a pair of black shorts, a pair of gray shorts, and a pair of white shorts. He also bought a red shirt and a blue shirt. How many different outfits can he make?
12. Each ticket costs $\$ 4.50$. Tickets purchased in pairs cost $\$ 7.50$. How much do 9 tickets cost?
13. Sandra is thinking of a number. It is less than 25 . When you divide it by 5 , the remainder is $\mathbf{1}$. When you divide it by 7 , the remainder is 4 . What is Sandra's number?

Think: What numbers less than 25 are 4 more than a multiple of 7 ?

Answer

\qquad
4. The sum of two numbers is 10 . Their difference is 0.6 . What are the two numbers?
6. What is the least possible 4-digit number for which the sum of the digits is 5 ?
\qquad
8. List all 2-digit numbers for which the sum of the digits is a prime number less than 7.
10. What is the least number that is divisible by both 5 and 12?
12. A bakery has 3 choices of cake-white, chocolate, or marble-and 3 choices of frosting-butter cream, whipped cream, or fudge. How many cake and frosting combinations are there?
14. One bag of potatoes is twice the weight of another bag of potatoes. If they weigh 45 lb together, what does each bag weigh?
\qquad

Fractions can be used to name points on a number line.

The two number lines above show these pairs of equivalent fractions:
$\frac{0}{3}=\frac{0}{6}$
$\frac{1}{3}=\frac{2}{6}$
$\frac{2}{3}=\frac{4}{6}$
$\frac{3}{3}=\frac{6}{6}$

Write the equivalent fractions shown by the number lines.

numerator $\rightarrow \frac{1}{3}$ The terms of a fraction are the numerator and the denominator $\rightarrow \frac{1}{\mathbf{3}}$ denominator. When you multiply each term of a fraction by the same whole number greater than 1, you get an equivalent fraction.

$$
\frac{1}{3}=\frac{1 \times 2}{3 \times 2}=\frac{2}{6} \quad \frac{1}{3}=\frac{1 \times 3}{3 \times 3}=\frac{3}{9} \quad \frac{1}{3}=\frac{1 \times 4}{3 \times 4}=\frac{4}{12} \quad \frac{1}{3}=\frac{1 \times 5}{3 \times 5}=\frac{5}{15}
$$

The fractions equivalent to $\frac{1}{3}$ are $\frac{1}{3}, \frac{2}{6}, \frac{3}{9}, \frac{4}{12}, \frac{5}{15}, \frac{6}{18}, \frac{7}{21}$, and so on.

Write 5 equivalent fractions.
2. $\frac{1}{2}$
$\frac{4}{5}$ \qquad
3. $\frac{1}{4}$
$\frac{2}{9}$ \qquad
4. $\frac{2}{3}$
$\frac{7}{8}$ \qquad
5. $\frac{9}{10}$ \qquad $\frac{3}{7}$
ivu car aisu uiviue me murnerator and tne genominator of a !racuon gy ne same wnole number greater than 1 to get an equivalent traction.

$$
\frac{24}{30}=\frac{24 \div 2}{30 \div 2} \rightarrow \frac{12}{15} \quad \frac{24}{30}=\frac{24 \div 3}{30 \div 3} \rightarrow \frac{8}{10} \quad \frac{24}{30}=\frac{24 \div 6}{30 \div 6} \rightarrow \frac{4}{5}
$$

The fractions $\frac{24}{30}, \frac{12}{15}, \frac{8}{10}$, and $\frac{4}{5}$ are equivalent.

Use division to write two equivalent fractions.
6. $\frac{14}{28}$
$\frac{12}{18}$
$\frac{36}{48}$ \qquad
7. $\frac{8}{16}$ \qquad
$\frac{12}{20}$
$\frac{18}{42}$ \qquad
8. $\frac{15}{30}$ \qquad
$\frac{6}{12}$
$\frac{27}{36}$ \qquad
9. $\frac{18}{27}$ \qquad
$\frac{16}{40}$
$\frac{24}{60}$ \qquad

Write an equivalent fraction.
10. $\frac{6}{12}=$ \qquad
$\frac{9}{21}=$ \qquad
$\frac{6}{9}=$ \qquad
$\frac{12}{18}=$ \qquad
11. $\frac{7}{21}=$ \qquad
$\frac{8}{10}=$ \qquad
$\frac{3}{12}=$ \qquad
$\frac{15}{20}=$ \qquad
12. $\frac{4}{14}=$ \qquad
$\frac{10}{12}=$ \qquad
13. $\frac{18}{32}=$ \qquad
$\frac{5}{35}=$ \qquad
14. $\frac{10}{25}=$ \qquad
$\frac{16}{18}=$ \qquad

Test Prep \times Mixed Review

15 Which expression is the prime factorization of 72 ?
A $36 \cdot 2$
C $12 \cdot 2 \cdot 3$
B $18 \cdot 2 \cdot 2$
D $2 \cdot 2 \cdot 2 \cdot 3 \cdot 3$
$\frac{6}{20}=$ \qquad
$\frac{16}{24}=$ \qquad
$\frac{10}{22}=$ \qquad
$\frac{8}{12}=$ \qquad
$\frac{8}{30}=$ \qquad
$\frac{2}{16}=$ \qquad

16 The population of California in 1997 was 31.88 million people. What is this number rounded to the nearest 0.1 million?

You can use division to write fractions less than 1 and fractions greater than 1 in simplest form.
$\begin{array}{ll}\text { A fraction is in simplest form when the only } & \frac{4}{6}=\frac{4 \div 2}{6 \div 2} \rightarrow \frac{2}{3} \\ \text { common factor of the numerator and }\end{array}$ denominator is 1 .

$\begin{array}{ll}\text { A fraction greater than } 1 \text { is in simplest form } \\ \text { when it is written as a mixed number and }\end{array} \quad \frac{8}{6}=\frac{8 \div 2}{6 \div 2} \rightarrow \frac{4}{3}$ the fraction part is less than 1 and in simplest form.

$$
\frac{4}{3} \rightarrow \underset{\frac{3}{\frac{-3}{1}}}{\frac{1}{4}} \quad \frac{4}{3}=1 \frac{1}{3}
$$

Write the fraction in simplest form.

1. $\frac{6}{8}=$ \qquad
$\frac{8}{4}=$ \qquad
$\frac{8}{10}=$ \qquad
$\frac{10}{8}=$ \qquad
2. $\frac{9}{12}=$ \qquad
$\frac{12}{9}=$ \qquad
$\frac{5}{20}=$ \qquad
$\frac{2}{8}=$ \qquad
3. $\frac{6}{4}=$ \qquad
$\frac{12}{15}=$ \qquad
$\frac{16}{48}=$ \qquad
$\frac{21}{49}=$ \qquad
4. $\frac{13}{26}=$ \qquad
$\frac{6}{18}=$ \qquad
$\frac{25}{15}=$ \qquad
$\frac{8}{30}=$ \qquad

Write the missing numerator or denominator.
5. $\frac{1}{3}=4$
$\frac{3}{4}=\underline{15}$
$\frac{3}{10}=15$
$\frac{2}{5}=6$
6. $\frac{8}{9}=\frac{}{18}$
$\frac{4}{3}=\frac{}{15}$
$\frac{7}{4}=35$
$\frac{9}{2}=\frac{}{8}$
7. $\frac{8}{20}=2$
$\frac{16}{28}=\frac{}{7}$
$\frac{9}{24}=\frac{}{8}$
$\frac{10}{32}=5$

To write a fraction such as $\frac{\mathbf{2 0}}{\mathbf{3 0}}$ in simplest form, divide both
the numerator and the denominator by their greatest
common factor.
Factors of 20: 1, 2, 4, 5, 10, 20
Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30

$$
\frac{20 \div 10}{30 \div 10}=\frac{2}{3}
$$

The GCF of 20 and 30 is 10.
To write a mixed number such as $7 \frac{4}{6}$ in simplest form, divide both the numerator and denominator of the

$$
\begin{aligned}
& \frac{4}{6}=\frac{4 \div 2}{6 \div 2} \text { or } \frac{2}{3} \\
& 7 \frac{4}{6}=7 \frac{2}{3}
\end{aligned}
$$

Write in simplest form.
8. $\frac{10}{3}=$ \qquad
$\frac{9}{4}=$ \qquad
$\frac{12}{5}=$ \qquad
$\frac{16}{10}=$ \qquad
9. $\frac{9}{12}=$ \qquad
$\frac{20}{4}=$ \qquad
$\frac{8}{10}=$ \qquad $\frac{11}{8}=$
\qquad
10. $\frac{20}{6}=$ \qquad
$\frac{25}{4}=$ \qquad
$\frac{22}{8}=$ \qquad
$\frac{0}{5}=$ \qquad

Problem Solving Reasoning

Solve.
11. Dan is planning to buy enough pizza so that each of 18 people can have one-fourth of a pizza. How many pizzas should he buy if he can only buy whole pizzas?

Explain. \qquad

Write three equivalent fractions for the given fraction.
12. $\frac{4}{5}$ \qquad
13. $\frac{3}{21}$ \qquad
14. $\frac{4}{12}$
\qquad
Write the fraction or mixed number in simplest form.
15. $\frac{12}{18}$ \qquad
16. $\frac{15}{35}$ \qquad
17. $\frac{24}{100}$ \qquad
18. $\frac{22}{4}$ \qquad
19. $\frac{44}{11}$ \qquad
20. $\frac{225}{200}$
\qquad

Work Space.

You can use number lines to compare fractions.

$\frac{2}{4}<\frac{3}{4}$ because $\frac{2}{4}$ is to the left of $\frac{3}{4}$.
$\frac{2}{3}>\frac{3}{5}$ because $\frac{2}{3}$ is to the right of $\frac{3}{5}$.
Use a number line to compare.

1. $\frac{3}{4} \bigcirc \frac{3}{5}$
$\frac{2}{3} \bigcirc \frac{3}{4}$
$\frac{3}{4} \bigcirc \frac{4}{5}$
$\frac{1}{3} \bigcirc \frac{1}{4}$
2. $\frac{2}{4} \bigcirc \frac{1}{2}$
$\frac{3}{5} \bigcirc \frac{1}{2}$
$\frac{1}{4} \bigcirc \frac{2}{4}$
$\frac{3}{4} \bigcirc \frac{2}{2}$

To compare fractions with different denominators you can write equivalent fractions with a common denominator. Use multiples to find a common denominator.

$$
\frac{5}{6}=\frac{15}{18} \quad \frac{\frac{5}{6} ? \frac{7}{9}}{\frac{5}{6}>\frac{7}{9}}
$$

Multiples of 6: 6, 12, 18, 24, 30, 36
Multiples of 9: 9, 18, 27, 36, 45
The first common multiple is the LCM.
The LCM of the denominators is the least common denominator (LCD).

Compare. Write $>$, <, or $=$.
3. $\frac{3}{4} \bigcirc \frac{7}{10}$
LCD $=$ \qquad
6. $\frac{5}{4} \bigcirc \frac{6}{5}$

You can use prime factorization to help you compare fractions.
Compare:
To compare fractions, you find the LCD of the

$$
9=3^{2}
$$

denominators. You can find the LCD of the $12=2^{2} \cdot 3$ denominators by writing the prime factorizations of the denominators.

The product of the greatest powers of the prime $\mathrm{LCD}=\mathbf{2}^{\mathbf{2}} \cdot \mathbf{3}^{\mathbf{2}}$ or $\mathbf{3 6}$ factors is the LCD.

Write equivalent fractions using the LCD, then compare.
$\frac{5}{9}=\frac{20}{36}$ and $\frac{7}{12}=\frac{21}{36}$
$\frac{5}{9} \bigcirc \frac{7}{12}$

Use the prime-factorization method to find the LCD of each pair of denominators. Then compare using $>,<$, or $=$.
9. $\frac{4}{9} \bigcirc \frac{7}{15}$

LCD = \qquad $\frac{4}{9} \rightarrow$
$\frac{7}{15} \rightarrow$
12. $\frac{3}{10} \bigcirc \frac{4}{15}$

LCD $=$ \qquad $\frac{3}{10} \rightarrow$ $\frac{4}{15} \rightarrow$
10. $\frac{9}{8} \bigcirc \frac{11}{10}$

LCD $=$ \qquad $\frac{9}{8} \rightarrow \square$ $\frac{11}{10} \rightarrow$
13. $\frac{7}{5} \bigcirc \frac{11}{8}$

LCD $=$ \qquad
$\frac{7}{5} \rightarrow$
$\frac{11}{8} \rightarrow$
11. $\frac{1}{3} \bigcirc \frac{4}{12}$

LCD = \qquad $\frac{1}{3} \rightarrow \square$
$\frac{4}{12} \rightarrow \square$ 14. $\frac{7}{12} \bigcirc \frac{9}{16}$ LCD = \qquad $\frac{7}{12} \rightarrow$
$\frac{9}{16} \rightarrow$

Compare: Use $>$, <, or $=$.
15. $\frac{1}{2} \bigcirc \frac{4}{7}$
16. $\frac{6}{5} \bigcirc \frac{5}{4}$
17. $\frac{22}{25} \bigcirc \frac{7}{8}$

Test Prep $*$ Mired Review

18 What is the exact decimal equivalent of $\frac{1}{33}$?
A 0.3
C 0.03
B $0 . \overline{3}$
D $0 . \overline{03}$

19 What is the solution to the equation $y+1,964=2,003$?

F 39
H 61
G 49
J 161

Fractions and mixed numbers can be written as decimals.

$$
\begin{array}{lll}
\frac{7}{10}=0.7 & 4 \frac{19}{100}=4.19 & \frac{13}{10} \rightarrow 1 \frac{3}{10}=1.3 \\
\frac{1}{2} \rightarrow \frac{5}{10}=0.5 & 1 \frac{3}{4} \rightarrow 1 \frac{75}{100}=1.75 & \frac{4}{5} \rightarrow \frac{8}{10}=0.8
\end{array}
$$

Decimals can be written as fractions or mixed numbers.
$0.3=\frac{3}{10}$
$2.09=2 \frac{9}{100}$
$5.231=5 \frac{231}{1,000}$

Write each fraction or mixed number as a decimal.

1. $\frac{7}{10}$ \qquad $\frac{9}{10}$ \qquad
$\frac{43}{100}$ \qquad
$\frac{87}{100}$
$\overline{100}$
$\frac{351}{1,000}$ \qquad 17
$\overline{1,000}$
\qquad
2. $\frac{3}{100}$ \qquad

\qquad
3. $\frac{9}{1,000}$ \qquad
$\frac{23}{1,000}$
$1 \frac{3}{10}$ \qquad
$4 \frac{29}{100}$
\qquad
4. $8 \frac{37}{1,000}$ \qquad
$2 \frac{3}{1,000}$ \qquad
$5 \frac{7}{100}$ \qquad $\frac{83}{10}$
5. $\frac{1}{5}$
$\frac{9}{20}$
$\frac{4}{25}$
$\frac{8}{5}$

Write each decimal as a fraction or mixed number in simplest form.
6. 0.1
0.3 \qquad 0.6 \qquad 0.8 \qquad
7. 0.75 \qquad
0.45 \qquad 0.80 \qquad 0.06 \qquad
8. 1.5 \qquad
2.3
1.4
2.6 \qquad
9. 4.25 \qquad
2.75 \qquad 1.48 \qquad 2.96 \qquad
10. 1.004 \qquad
8.2 \qquad 0.013 \qquad 3.73 \qquad
11. 3.05 \qquad
0.107 \qquad
6.04 \qquad 9.029 \qquad

	$\frac{2}{10}$	$\frac{4}{10}$	$\frac{6}{10}$	$\frac{8}{18}$		$\frac{2}{10}$	$\overline{4} \frac{4}{10}$		8	2	$\frac{3}{2} \frac{3}{10}$	之年	$\varepsilon \frac{\hat{6}}{10}$	$\sum \frac{8}{10}$	3
0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.	2.2	2.4			

One way is to rewrite the fractions, mixed numbers, and Compare $0.8 ? \frac{3}{5}$.
decimals as fractions with the same denominator. Then compare using a number line.

$$
\begin{aligned}
0.8 & =\frac{8}{10} \quad \frac{3}{5}=\frac{6}{10} \\
\text { Since } \frac{8}{10} & >\frac{6}{10}, 0.8>\frac{3}{5} .
\end{aligned}
$$

Another way is to rewrite the fractions and mixed numbers as decimals. Then compare using a number line.

Write 2.6, $2 \frac{1}{5}$, and $\frac{11}{4}$ in order from least to greatest.
$2 \frac{1}{5}=2 \frac{2}{10}$ or $2.2 \quad \frac{11}{4}=2 \frac{3}{4}$ or 2.75
$2.2,2.6,2.75 \rightarrow 2 \frac{1}{5}, 2.6, \frac{11}{4}$
Compare. Write $>$, <, or $=$.
12
$\frac{9}{10} \bigcirc 0$.
0.13
$3 \frac{1}{5}$
3.2
$\frac{3}{4}$

0.8
$\frac{8}{20}$

0.33

Rewrite as decimals or fractions. Then write them in order from least to greatest.
13. $\frac{9}{20}, 0.42, \frac{5}{4}$ \qquad $\frac{3}{5}, \frac{3}{4}, 0.7$
14. $1 \frac{1}{4}, 1.65, \frac{3}{2}$ \qquad 1.3, 0.75, $\frac{7}{4}$ \qquad

Problem Solving
 Reasoning

Solve.
15. List $\mathbf{3}$ decimals and 3 fractions between $\mathbf{0 . 1}$ and $\mathbf{0 . 2}$.

Test Prep - Mired Review

16 The size of a poster is $\mathbf{1 8}$ inches by $\mathbf{3 0}$ inches. How much can it be reduced and still have dimensions that are a whole number of inches?
A To $\frac{1}{2}$ size
C To $\frac{1}{6}$ size
B To $\frac{1}{4}$ size
D To $\frac{1}{12}$ size

17 Each jar of Brand A popcorn contains 10 oz of popcorn and the jar weighs 2 ounces. The contents of a carton of this popcorn weigh 288 ounces. Which equation can be used to find the number (n) of full popcorn jars in the carton?
F $288 \div n=10+2$
G $288 \div n=10 \cdot 2$
H (10 $\cdot 2) \cdot n=288$
J $(10+2) \div n=288$

You can write a fraction as a decimal by dividing the numerator by the denominator.

$\frac{3}{8}=0.375$
$8 \longdiv { 3 . 0 0 0 }$
$\frac{-24}{60}$
-56
$\begin{array}{r}-40 \\ \hline 0\end{array}$

The remainder in the division above is zero and the decimal quotient terminates or stops.

Decimals that terminate are called terminating decimals.

The digit 3 repeats in the quotient above. You write a bar over the digit or digits that repeat.

Decimals that have repeating digits are called repeating decimals.

Write the fraction as a decimal. Use a bar to show a repeating decimal.

Write the fraction as a decimal. Use a bar to show a repeating decimal.
13. $\frac{11}{16}$ \qquad
14. $\frac{8}{11}$ \qquad
15. $\frac{13}{9}$ \qquad

Problem Solving Reasoning
16. Write $\frac{1}{9}, \frac{2}{9}, \frac{3}{9}$, and $\frac{4}{9}$ as decimals. Using patterns, write $\frac{5}{9}, \frac{6}{9}, \frac{7}{9}$, and $\frac{8}{9}$ as decimals.
17. Write $\frac{1}{11}, \frac{2}{11}, \frac{3}{11}$, and $\frac{4}{11}$ as decimals. Using patterns, write $\frac{5}{11}, \frac{6}{11}, \frac{7}{11}$, and $\frac{8}{11}$ as decimals.
\qquad
\qquad

\checkmark
 Quick Check

Write the least common denominator for the two fractions.
18. $\frac{7}{8}$ and $\frac{3}{4}$ \qquad 19. $\frac{2}{3}$ and $\frac{3}{5}$ \qquad 20. $\frac{5}{12}$ and $\frac{7}{15}$
\qquad
21. Rewrite the pair of fractions in item $\mathbf{2 0}$
using the least common denominator. \qquad

Write the equivalent decimal. Round to the nearest hundredth.
22. $\frac{27}{1,000}$ \qquad 23. $\frac{5}{8}$ \qquad 24. $\frac{3}{11}$ \qquad
Write as a fraction in simplest form.
25. 0.76 \qquad 26. 2.008 \qquad 27. 7.335 \qquad
Write as an exact decimal, using bar notation.
28. $\frac{5}{18}$ \qquad 29. $\frac{5}{27}$ \qquad 30. $\frac{8}{27}$ \qquad

This vertical bar graph shows the heights of some buildings in the United States.

In this lesson, you will use bar graphs to compare, make estimates, and draw conclusions about data.

Tips to Remember:

1. Understand 2. Decide 3.Solve 4. Look back

- Ask yourself: Have I solved a problem like this one before? How did I solve it?
- Compare the labels on the graph with the words and numbers in the problem. Find the facts you need from the graph.
- When you can, make a prediction about the answer. Then compare your answer with your prediction.

Solve. Use the graph above.

1. Can you conclude from the graph that the Empire State Building is about twice as tall as the Chrysler Building? Why or why not?

Think: Should you compare the heights of the bars or the numbers on the scale?

Answer \qquad
3. The World Trade Center in New York City is $\mathbf{4 1 0}$ meters tall. Is it the tallest building in the United States? Explain.
2. To the nearest 10 meters, what is the difference in the height of the Sears Tower and the height of the Empire State Building?

Think: How many meters are represented by each vertical block?

Answer

\qquad
4. The Chrysler Building is about twice as tall as the Washington Monument in Washington, D.C. About how tall is the Washington Monument?

Solve. Use the graph above.
5. Do the Boy's Soccer and Girl's Soccer groups combined have more members than the Band?
\qquad
7. Which group has $\frac{3}{4}$ as many members as the Swim Club?
\qquad
9. Which club has about $\frac{3}{4}$ as many members as Girl's Soccer?
\qquad

Extend Your Thinking

11. Takiya looked at the graph and decided that there must be more girls than boys in the sixth level. Do you agree or disagree? Explain.
\qquad
\qquad
\qquad
12. Explain how you found your answer to exercise 10.
13. Estimate the average membership for all the groups. (Round your answer to the nearest whole number.)
\qquad
14. Which group has $1 \frac{7}{8}$ times as many members as the Swim Club?
\qquad
15. Complete this statement using a fraction or mixed number.

The Band has \qquad times as many members as Boy's Soccer.
12. Mark looked at the graph and concluded that there are 184 students in the sixth level. Do you agree or disagree? Explain.
\qquad
\qquad
\qquad
14. Explain how you found your answer to exercise 7.

Write whether each number is divisible by $2,3,4,5,6,9$, or 10 .

1. 117 divisible by: \qquad 2. 120 divisible by:

Simplify each expression.
3. $5^{2}-2 \times 3$ \qquad 4. $10(5-2)^{2}$ \qquad

Write \mathbf{P} or C to indicate whether the number is prime or composite. If it is composite, write the prime factorization in exponent form.
5. 11 \qquad 6. 15 \qquad 7. 36

Write the GCF and LCM of each pair of numbers.
8. 15 and 25
9. 6 and 18
\qquad

Write two equivalent fractions for each.
10. $\frac{6}{9}$
11. $\frac{14}{20}$

Write each as a fraction or mixed number in simplest form.
12. 0.38 \qquad 13. $\frac{24}{14}$

Compare. Write $>$, <, or $=$.
14. $\frac{4}{5} \bigcirc 0.6$
15. 4.9

16. 0.55
$\bigcirc \frac{55}{10}$

Write these numbers in order from least to greatest.
17. $0.5 ., \frac{3}{9}, \frac{1}{8}, 0.45$ \qquad 18. $6.3, \frac{44}{5}, \frac{10}{12}, 3.45$

Use graph at right to answer each question.
19. Which city has more than 3 times as much annual rainfall as Sacramento?
20. Fairbanks has a recorded average annual snowfall of about 67 in. About how many times greater is its snowfall than its rainfall?

21. Mia, Joe, Sue, and Ty are standing in line. How many different ways can they stand in line if Ty is first in line?
(1) The cost of $\mathbf{3 . 2 5}$ pounds of bananas is $\mathbf{\$ 1 . 1 7}$. What is the cost for 1 pound?
A $\$.31$
C $\$.33$
E \$. 36
B $\$.32$
D $\$.35$

2 Greg drives 16.9 miles to his workplace each day. His wife drives 34.2 miles to her workplace. How much farther does Greg's wife drive to her workplace each day?

F 7.3 miles
G 8.3 miles
H 17.3 miles
J 18.3 miles
K NH

3 The Brite-White Cleaning Company cleans the office of Client A every 9 days. It cleans the office of Client B every 6 days. The schedule for three weeks is shown below. After how many weekdays will both clients next need their offices cleaned?

A 9 days
C 15 days
B 12 days
D 18 days

A theater seats a total of $\mathbf{7 5 0}$ people. There are 50 seats in each section. Which equation can be used to find the number (n) of sections in the theater?

$$
\begin{array}{ll}
\text { F } 50+n=750 & \text { H } 750 n=50 \\
\text { G } 750 \div n=50 & \text { J } 750-n=50
\end{array}
$$

(5) What number does the picture represent?

A 0.26
C 2.06
B 2.6
D 26

6 Which number could represent the indicated point on the number line?

F $1 \frac{13}{24}$
H $1 \frac{17}{24}$
G $1 \frac{3}{8}$
J $1 \frac{19}{24}$
(7) Carmen has 4 routes she can take to go from home to school. Order the routes from shortest to longest.

Route	Length
A	$1 \frac{1}{4} \mathrm{mi}$
B	$1 \frac{1}{2} \mathrm{mi}$
C	$1 \frac{3}{8} \mathrm{mi}$
D	$1 \frac{1}{8} \mathrm{mi}$

F Route A, Route B, Route C, Route D
G Route B, Route A, Route D, Route C
H Route D, Route A, Route C, Route B
J Route B, Route C, Route A, Route D
UNIT 4 • TABLE OF CONTENTS
Fractions
Lesson Page
1 Adding and Subtracting with Like Denominators 97
2 Adding Fractions with Unlike Denominators 100
3 Subtracting Fractions with Unlike Denominators 102
4 Problem Solving Application: Use a Pictograph 105
5 Multiplying Fractions Using Area 107
6 Multiplying Fractions 109
7 Fraction of a Number 111
8 Multiplying Mixed Numbers 113
9 Reciprocals 115
10 Dividing by a Fraction 117
11 Dividing Fractions and Whole Numbers 119
12 Dividing Mixed Numbers 121
13 Problem Solving Strategy: Draw a Diagram 123
14 Algebra: Solving Equations with Fractions 125

- Unit 4 Review 127
- Cumulative Review \star Test Prep 128

Dear Family,

During the next few weeks, our math class will be learning about fractions. You can expect to see homework that provides practice with multiplying fractions. Here is a sample you may want to keep handy to give help if needed.

Multiplying Fractions

One way to multiply fractions is to multiply the numerators and multiply the denominators, then use division to write the answer in simplest form.

$$
\frac{2}{15} \times \frac{1}{7} \times \frac{5}{6}=\frac{2 \times 1 \times 5}{15 \times 7 \times 6} \rightarrow \frac{10}{630} \quad \frac{10 \div 10}{630 \div 10}=\frac{1}{63}
$$

Another way to multiply fractions is to simplify before multiplying. To simplify, divide any numerator and any denominator by a common factor.

$$
\frac{\frac{1}{15}}{15} \times \frac{1}{7} \times \frac{5}{6} \quad \text { Divide } 2 \text { and } 6 \text { by } 2
$$

Simplify as many times as you can.

$$
\frac{\frac{1}{1 / 3}}{\frac{1}{3}} \times \frac{1}{7} \times \frac{\frac{1}{6}}{\frac{8}{3}} \quad \text { Divide } 5 \text { and } 15 \text { by } 5
$$

Then multiply.

$$
\frac{\frac{1}{1 /}}{\frac{1 / 3}{3}} \times \frac{1}{7} \times \frac{\frac{1}{6}}{\frac{8}{3}}=\frac{1}{63}
$$

During this unit, students will need to continue to practice

 multiplying fractions.
Sincerely,

To add or subtract fractions that have the same denominator:

1. Add or subtract the numerators to find the numerator of the answer.
2. Write the denominator of the fractions as the denominator of the answer.
3. Write the sum or difference in simplest form.

Write each sum or difference in simplest form.

1. $\frac{5}{7}-\frac{4}{7}=$ \qquad
$\frac{3}{10}+\frac{7}{10}=$ \qquad
$\frac{7}{12}-\frac{1}{12}=$ \qquad
2. $\frac{5}{6}+\frac{5}{6}=$ \qquad
$\frac{2}{15}+\frac{8}{15}=$ \qquad
$\frac{2}{5}+\frac{4}{5}=$
$\frac{10}{11}-\frac{4}{11}=$ \qquad
3. $\frac{15}{20}-\frac{8}{20}=$ \qquad
$\frac{10}{11}+\frac{4}{11}=$ \qquad
\qquad
4. $\frac{4}{9}$
$\frac{3}{5}$
$+\frac{8}{9}$
$+\frac{4}{5}$
$\begin{array}{r}\frac{5}{6} \\ -\frac{1}{6} \\ \hline\end{array}$
$\begin{array}{r}\frac{4}{9} \\ -\frac{2}{9} \\ \hline\end{array}$
$\begin{array}{r}\frac{1}{3} \\ -\frac{1}{3} \\ \hline\end{array}$
5. $\frac{9}{10}$
$\frac{4}{7}$
$\begin{array}{r}\frac{3}{8} \\ -\frac{1}{8} \\ \hline\end{array}$
$\begin{array}{r}\frac{5}{12} \\ +\frac{11}{12} \\ \hline\end{array}$
$\begin{array}{r}\frac{3}{4} \\ -\frac{1}{4} \\ \hline\end{array}$

To add or subtract mixed numbers with the same denominator:

1. Add or subtract the numerators of the fraction parts.
2. Add or subtract the whole numbers.
3. Simplify.

$$
2 \frac{7}{9}
$$

$$
\frac{+4 \frac{8}{9}}{\frac{15}{9}}
$$

$$
\begin{array}{ll}
2 \frac{7}{9} & 2 \frac{7}{9} \\
+4 \frac{8}{9} & +4 \frac{8}{9} \\
\hline 6 \frac{15}{9} & \frac{15}{9}=7 \frac{6}{9} \text { or } 7 \frac{2}{3}
\end{array}
$$

Write the sum or difference in simplest form.
6. $2 \frac{4}{9}$
$\begin{array}{r}4 \frac{7}{8} \\ +1 \frac{1}{8} \\ \hline\end{array}$
$-1 \frac{1}{9}$
$4 \frac{5}{6}$
$6 \frac{7}{10}$
$3 \frac{1}{3}$
$\begin{array}{r}-\quad 1 \\ \hline\end{array}$
$-2 \frac{3}{10}$
$+1 \frac{2}{3}$
7. $6 \frac{4}{5}$

$$
3 \frac{7}{12}
$$

$3 \frac{1}{2}$
$-1 \frac{1}{2}$
$5 \frac{2}{3}$

- 4
$\begin{array}{r}4 \frac{1}{2} \\ +4 \frac{1}{2} \\ \hline\end{array}$

8. $4 \frac{6}{7}$
$8 \frac{3}{15}$
$5 \frac{11}{14}$
$6 \frac{3}{4}$
$7 \frac{3}{8}$
$-1 \frac{2}{7}$
$+7 \frac{7}{15}$
$-2 \frac{3}{14}$
$+\quad \frac{3}{4}$
-5
9. $6 \frac{9}{10}$
$\begin{array}{r}1 \frac{7}{9} \\ -1 \frac{4}{9} \\ \hline\end{array}$
$\begin{array}{r}4 \frac{5}{6} \\ -1 \frac{5}{6} \\ \hline\end{array}$
$7 \frac{2}{3}$
$3 \frac{5}{12}$
$+2 \frac{7}{10}$

- 7
-2
Copyright © Houghton Mifflin Company. All rights reserved.

10. $3 \frac{3}{4}$

$\begin{array}{r}6 \frac{1}{5} \\ +1 \frac{2}{5} \\ \hline\end{array}$
$\begin{array}{r}9 \frac{3}{16} \\ -5 \frac{1}{16} \\ \hline\end{array}$
$2 \frac{8}{10}$
$-1 \frac{1}{4}$
$+3 \frac{5}{10}$
\qquad

You may need to rename a mixed number before you subtract.

$$
7 \frac{1}{9}-2 \frac{4}{9}
$$

1. Since $\frac{4}{9}>\frac{1}{9}$, rename $7 \frac{1}{9}$

$$
\begin{array}{lr}
7 \frac{1}{9}=6+\frac{9}{9}+\frac{1}{9}= & 6 \frac{10}{9} \\
-2 \frac{4}{9} & -2 \frac{4}{9} \\
\hline
\end{array}
$$

2. Subtract and write the difference in simplest form.

$$
\begin{array}{r}
6 \frac{10}{9} \\
-2 \frac{4}{9} \\
\hline 4 \frac{6}{9}=4 \frac{2}{3}
\end{array}
$$

Sometimes you may need to rename a whole number before you subtract.

4	$\rightarrow 3 \frac{6}{6}$
$-1 \frac{5}{6}$	$\rightarrow-1 \frac{5}{6}$
$2 \frac{1}{6}$	

Write the difference in simplest form.
11. $4 \frac{3}{7}$
$7 \frac{1}{4}$
$5 \frac{1}{6}$
$2 \frac{5}{8}$
$7 \frac{4}{9}$
$-1 \frac{5}{7}$
$-2 \frac{5}{6}$
$\begin{array}{r}7 \\ -\quad \frac{7}{8} \\ \hline\end{array}$
$-2 \frac{4}{9}$
12. 6 $-1 \frac{1}{2}$
$-2 \frac{3}{4}$ $\begin{array}{r}7 \\ -\quad 1 \frac{5}{8} \\ \hline\end{array}$

8
$-3 \frac{1}{5}$
$6 \frac{4}{15}$
$-4 \frac{7}{15}$
$3 \frac{1}{5}$

Test Prep $*$ Mixed Review

13 Mr. Somer's art class made clay pots. There are 28 students in the class. They used 78.4 pounds of clay altogether. Which equation could be used to find the average amount of clay each student used?
A $78.4 \div c=28$
C $78.4-c=28$
B $78.4 c=28$
D $c \div 78.4=28$

14 Which list contains only composite numbers?
F $2,3,5,7$
H 4, 6, 8, 9
G $3,4,5,6$
J 4, 6, 7, 9

Adding Fractions with
 Unlike Denominators

When you add fractions with unlike denominators, it can help to think of a model of the fractions.

How much is shaded all together?

$$
\frac{5}{6}+\frac{3}{4}
$$

1. Estimate first.
$\frac{5}{6}$ rounds up to 1.
$\frac{3}{4}$ rounds up to 1 .
$1+1=2$
So $\frac{5}{6}+\frac{3}{4}$ is about 2 .
2. Write equivalent fractions. Then, add. Write the sum in simplest form.

$$
\begin{array}{r}
\frac{5}{6}=\frac{10}{12} \\
+\frac{3}{4}=+\frac{\frac{9}{12}}{\frac{19}{12}}=1 \frac{7}{12}
\end{array}
$$

Estimate. Then write the sum in simplest form.

1. $\frac{2}{5}$
$+\frac{7}{10}$
$\frac{5}{6}$
$+\frac{4}{9}$
$\frac{2}{3}$

$$
+\frac{1}{4}
$$

2. $\frac{1}{2}$ $+\frac{7}{8}$
$\begin{array}{r}\frac{3}{8} \\ +\frac{5}{6} \\ \hline\end{array}$

$$
\begin{array}{r}
\frac{3}{5} \\
+\frac{1}{4} \\
\hline
\end{array}
$$

3. $\frac{1}{2}$

$$
\frac{3}{10}
$$

$$
\frac{2}{3}
$$

$$
\begin{array}{r}
3 \\
+\frac{3}{10} \\
\hline
\end{array}
$$

$$
+\frac{3}{4}
$$

$$
+\frac{3}{5}
$$

4. $\frac{2}{3}$
$+\frac{5}{9}$

$$
\begin{array}{r}
\frac{1}{2} \\
+\frac{4}{5} \\
\hline
\end{array}
$$

5. $\frac{5}{12}$

$$
+\frac{1}{4}
$$

\qquad

$$
\begin{array}{r}
\frac{1}{6} \\
+\quad \frac{1}{12} \\
\hline
\end{array}
$$

Name \qquad
You can also estimate using mixed numbers.

Estimate: $4 \frac{1}{6}+\frac{2}{9}$
$4 \frac{1}{6}$ rounds down to 4.
$\frac{2}{9}$ rounds down to 0 .
The sum is about 4.
$4 \frac{1}{6}=4 \frac{3}{18}$
$+\frac{2}{9}=+\frac{4}{18}$
$4 \frac{7}{18}$

Estimate: $3 \frac{5}{6}+5 \frac{3}{4}$
$3 \frac{5}{6}$ rounds up to 4 . $3 \frac{5}{6}=3 \frac{10}{12}$
$5 \frac{3}{4}$ rounds up to 6 .
$+5 \frac{3}{4}=+5 \frac{9}{12}$
The sum is about 10.

Estimate. Then write the sum in simplest form.
6. $4 \frac{1}{10}$
$6 \frac{4}{5}$
$6 \frac{7}{8}$
$+2 \frac{1}{2}$
$+2 \frac{1}{6}$
$+2 \frac{3}{4}$
7. $4 \frac{3}{4}$
$2 \frac{3}{4}$
$+1 \frac{1}{6}$
$12 \frac{7}{8}$
$+2 \frac{2}{5}$
$+6 \frac{1}{3}$
8. $9 \frac{7}{8}$
$8 \frac{1}{10}$
$+5 \frac{1}{4}$

$$
15 \frac{3}{4}
$$

$$
+4 \frac{5}{6}
$$

Solve.

Problem Solving

 Reasoning9. A cave is $5 \frac{1}{2}$ miles west of a waterfall. A group of hikers is $2 \frac{1}{4}$ miles east of the waterfall.
How far is the group of hikers from the cave?

Test Prep \times Mixed Review

11 Lisa decorated a box with buttons. She used 6^{3} buttons in all. How many buttons is that?
A 6
B 36
C 63
D 216
(11) What is the least common multiple of 4,5 , and 6?

F 15
G 20
H 60
J 120

When you subtract fractions with unlike denominators think about fraction models.
How much more is shaded red?

1. Estimate first.
$\frac{5}{6}$ is about $1-0$
$-\frac{1}{4}$ is about 0
The difference is about 1.
2. Write equivalent fractions. Then, subtract. Write the difference in simplest form.

$$
\begin{array}{r}
\frac{5}{6}=\frac{10}{12} \\
-\frac{1}{4}=-\frac{3}{\frac{3}{12}} \\
\frac{7}{12}
\end{array}
$$

Estimate. Then write the difference in simplest form.

1. $\frac{7}{10}$
$\frac{5}{6}$
$\frac{3}{4}$
$-\frac{1}{5}$
$-\frac{2}{9}$
$-\frac{1}{3}$
2. $\frac{5}{8}$
$-\frac{1}{2}$
$\frac{5}{6}$
$-\frac{3}{8}$
$\frac{3}{4}$
$-\frac{2}{5}$
3. $\begin{array}{r}\frac{1}{2} \\ -\frac{3}{10} \\ \hline\end{array}$ \qquad $\begin{array}{r}\frac{4}{5} \\ -\frac{2}{3} \\ \hline\end{array}$
4. $\frac{8}{9}$
$-\frac{2}{3}$
$\frac{5}{6}$
$-\frac{3}{10}$
$\frac{4}{5}$
$-\frac{1}{2}$
5. $\frac{5}{12}$

$$
\begin{array}{r}
\frac{7}{15} \\
-\frac{1}{6} \\
\hline
\end{array}
$$

$$
\frac{5}{6}
$$

$$
-\frac{1}{4}
$$

$$
\begin{array}{r}
1 \\
-\frac{1}{12} \\
\hline
\end{array}
$$

You can estimate the difference of mixed numbers.
Estimate: $7 \frac{5}{6}-3 \frac{4}{9}$

> Subtract.

$$
\text { about } 8-3 \frac{1}{2}
$$

$$
\begin{array}{r}
7 \frac{5}{6}=7 \frac{15}{18} \\
-3 \frac{4}{9}=-3 \frac{8}{18} \\
4 \frac{7}{18}
\end{array}
$$

The difference is about $\mathbf{4} \frac{1}{2}$.

Estimate. Then write each difference in simplest form.
6. $4 \frac{1}{2}$
$-2 \frac{1}{3}$
$6 \frac{3}{5}$
$-2 \frac{1}{4}$
6
$-2 \frac{3}{4}$
7. $4 \frac{3}{4}$

2
$-1 \frac{1}{6}$

$\begin{array}{r}12 \frac{7}{8} \\ -6 \frac{1}{3} \\ \hline\end{array}$
8. $9 \frac{7}{8}$
$8 \frac{3}{8}$ $-4 \frac{5}{6}$
$-5 \frac{1}{6}$
$-12 \frac{5}{8}$
9. $27 \frac{5}{12}$

19

$$
36 \frac{1}{2}
$$

$-14 \frac{1}{3}$

$$
-11 \frac{3}{10}
$$

$-25 \frac{3}{10}$
10. 6
$-4 \frac{3}{5}$

$$
\begin{array}{r}
8 \frac{2}{3} \\
-5 \frac{1}{4} \\
\hline
\end{array}
$$

$$
15 \frac{5}{9}
$$

$$
-9 \frac{1}{3}
$$

11. $7 \frac{6}{10}$
5
$-1 \frac{1}{5}$
$6 \frac{10}{18}$
$-3 \frac{1}{5}$
$-2 \frac{2}{9}$

When subtracting mixed numbers whose fractions have unlike denominators, you may have to rename a mixed number in order to subtract.

Subtract: $\quad 8 \frac{1}{6}-3 \frac{7}{9}$

1. Estimate.
2. Rename.
3. Subtract. Simplify if you can.
$8 \frac{1}{6}$ rounds down to 8.
$3 \frac{7}{9}$ rounds up to 4.

$$
\begin{array}{rlr}
8 \frac{1}{6} & =7+1+\frac{1}{6} & 7 \frac{21}{18} \\
& =7+\frac{6}{6}+\frac{1}{6} & -3 \frac{14}{18} \\
& =7+\frac{7}{6} & 4 \frac{7}{18}
\end{array}
$$

common denominator

$$
=7+\frac{7 \times 3}{6 \times 3}
$$ of 6 and 9 is 18

$$
=7 \frac{21}{18}
$$

The difference $4 \frac{7}{8}$ is close to the estimate. So the answer is reasonable.
Estimate. Then write the difference in simplest form.
12. $4 \frac{1}{3}$
$6 \frac{1}{4}$
$5 \frac{7}{8}$
$-1 \frac{1}{2}$
$-2 \frac{2}{3}$
$-2 \frac{1}{4}$
13. $6 \frac{1}{6}$
$\begin{array}{r}9 \frac{3}{5} \\ -\frac{7}{8} \\ \hline\end{array}$
$4 \frac{3}{10}$
$-4 \frac{3}{8}$
$-1 \frac{5}{6}$
(A) Quick Check

Write the sum or difference in simplest form.
14. $\frac{2}{9}+\frac{4}{9}$ \qquad
16. $\frac{7}{12}-\frac{5}{12}$ \qquad
15. $\frac{3}{5}+\frac{4}{5}$ \qquad
17. $9-\frac{7}{8}$ \qquad
20. $\frac{7}{8}$
$+\frac{3}{4}$
21. $1 \frac{1}{5}$
$+2 \frac{2}{3}$
24. $\frac{11}{12}$
$-\frac{2}{3}$
25. $4 \frac{1}{3}$
$-2 \frac{3}{4}$

Work Space.
22. $3 \frac{5}{7}$
$-2 \frac{1}{7}$
23. $6 \frac{5}{8}$
$-5 \frac{7}{8}$
18. $10 \frac{1}{6}$
$+4 \frac{5}{6}$
19. $3 \frac{5}{8}$
$+4 \frac{7}{8}$

Name \qquad Problem Solving Application:

Use a Pictograph
A pictograph uses a symbol to represent a certain number. The key shows the number that each symbol represents.

The pictograph on this page shows the number of students who take part in the activities listed.

You will use pictographs to solve the problems in this lesson.

Tips to Remember:

1. Understand 2. Decide 3.Solve 4. Look back

- Read the problem carefully. Ask yourself questions about any part that does not make sense. Reread to find answers.
- When using a pictograph, remember to use the key.
- Think about the strategies you have already learned. Try using one of them to solve the problem.

STUDENTS TAKING PART IN SCHOOL ACTIVITIES	
Softball	1 1 1 1
Basketball	-
Soccer	- 1 T 1
Baseball	2 1 - 1
Tennis	1
Chorus	2 1
Chess	121
KEY: Each	epresents 10 stud

Solve. Use the pictograph above.

1. How many students take part in soccer?

Think: Only half of the last symbol is shown. What is $\frac{1}{2}$ of 10 ?

Answer

3. How many more students are taking part in basketball than tennis?
\qquad
4. Three-fourths of the chorus came to rehearsal. How many students did not show up?
5. Which activities have $\mathbf{3 5}$ students?

Think: How many symbols would be used to represent 35 students?

Answer
4. Suppose all the students in the chorus can take part in chess. How many students could take part in both?
6. All of the students in softball, basketball, soccer, baseball, and tennis went to a banquet. How many attended?

AVERAGE AMOUNT OF FOOD EATEN BY ONE PERSON IN ONE YEAR	
Meat	
Fruit	
Vegetables	
Flour	
KEY: Each	

Solve. Use the pictograph above.
7. For which item is the average 180 pounds?
9. Three-fourths of the last symbol is shown for meat. What is the average for meat?
\qquad
11. The average for sugar is 90 pounds. How many symbols would be needed to represent that amount?
13. On the average, how many pounds of fruits and vegetables combined does a person eat in a year?
\qquad

Extend Your Thinking

15. Would it be correct to say on the average, for every 2 lb of fruit, $\mathbf{3} \mathrm{lb}$ of vegetables are eaten? Explain.
\qquad
16. Go back to problem 11. Suppose each symbol represents 25 pounds. How many symbols would be needed?
17. For which item is the average 270 pounds?
18. What is the difference between the average for meat and the average for vegetables?
19. The average for milk and cream is $\mathbf{3 1 0}$ pounds. How many symbols would be needed to represent that amount?
\qquad
20. If a person ate about the same amount of meat each month, estimate the amount eaten each month; each week.
\qquad
21. Which item shows an average amount that is half as much as another item? Explain.
22. Do you think the average for flour is closer to $\mathbf{1 2 0}$ pounds or $\mathbf{1 4 0}$ pounds? Explain how you decided.
\qquad

You can find the area of the shaded rectangle by counting or by multiplying.

Counting You can count 6 square units. So the area is 6 square units.

Multiplying The shaded rectangle is $\mathbf{3}$ squares long and 2 squares wide.

$$
2 \times 3=6 \text { square units }
$$

You can also find the area of a shaded part of a unit square by counting or by multiplying.

Counting Each small rectangle is $\frac{1}{10}$ of the whole.
You can count 3 small rectangles that are shaded. So the area is $\frac{\mathbf{3}}{10}$ of the square.

Multiplying The shaded rectangle is $\frac{3}{5}$ as long and $\frac{1}{2}$ as wide as the whole square.

$$
\frac{1}{2} \times \frac{3}{5}=\frac{1 \times 3}{2 \times 5} \text { or } \frac{3}{10}
$$

Multiply. Use the picture to check your answer.

1. $\frac{1}{3} \times \frac{1}{4}=$ \qquad $\frac{1}{2} \times \frac{3}{4}=$ \qquad $\frac{2}{5} \times \frac{2}{3}=$ \qquad $\frac{2}{3} \times \frac{2}{3}=$ \qquad

Shade a part of each picture to show the product.

Multiply.

2. $\frac{4}{5} \times \frac{2}{3}=$ \qquad
$\frac{1}{3} \times \frac{2}{3}=$ \qquad
$\frac{3}{4} \times \frac{3}{5}=$ \qquad
$\frac{3}{4} \times \frac{1}{4}=$ \qquad

To multiply two fractions:

1. Multiply the numerators to find the numerator of the product.

$$
\frac{1}{4} \times \frac{2}{5} \rightarrow 1 \times \frac{2}{4} \times 5=\frac{2}{20}
$$

2. Multiply the denominators to find the denominator of the product.

Multiply. Write the product in simplest form.
3. $\frac{1}{2} \times \frac{1}{5}=$ \qquad
$\frac{2}{3} \times \frac{4}{9}=$ \qquad
$\frac{1}{2} \times \frac{7}{5}=$ \qquad $\frac{1}{3} \times \frac{5}{8}=$
4. $\frac{2}{1} \times \frac{1}{5}=$ \qquad
$\frac{3}{4} \times \frac{1}{5}=$ \qquad
$\frac{4}{7} \times \frac{2}{3}=$ \qquad $\frac{1}{2} \times \frac{3}{8}=$
5. $\frac{1}{8} \times \frac{1}{7}=$ \qquad
$\frac{4}{9} \times \frac{1}{3}=$ \qquad
$\frac{3}{10} \times \frac{1}{2}=$ \qquad
$\frac{2}{5} \times \frac{3}{5}=$
6. $\frac{3}{4} \times \frac{1}{7}=$ \qquad
$\frac{2}{3} \times \frac{7}{5}=$ \qquad
$\frac{4}{3} \times \frac{5}{9}=$ \qquad $\frac{3}{2} \times \frac{3}{7}=$
7. $\frac{1}{5} \times \frac{5}{7}=$ \qquad $\frac{3}{8} \times \frac{8}{9}=$
$\frac{2}{3} \times \frac{6}{10}=$ \qquad $\frac{3}{4} \times \frac{4}{5}=$
8. $\frac{3}{7} \times \frac{7}{12}=$ \qquad
$\frac{1}{2} \times \frac{4}{9}=$ \qquad
$\frac{5}{6} \times \frac{1}{5}=$ \qquad $\frac{7}{9} \times \frac{3}{7}=$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem Solving

 ReasoningSolve.
9. When a fraction is multiplied by another fraction and both fractions are less than 1, is the product greater than, less than, or equal to 1? Explain.
10. Pat multiplied $\frac{1}{3}$ by another fraction. The product was $\frac{1}{8}$.

What was the fraction? \qquad

Test Prep \star Mixed Review

11 Joanna made a quilt using 72 squares. Of these squares $\frac{1}{4}$ were green, $\frac{2}{9}$ were blue, $\frac{4}{9}$ were yellow, and $\frac{1}{12}$ were white. She used the least number of squares of which color?
A blue
B green
C white
D yellow

12 Yesterday, Steven practiced basketball for $1 \frac{3}{4}$ hours. Today, he practiced for $2 \frac{3}{8}$ hours. How long did he practice during the two days?
F 3 h
G $3 \frac{1}{8} \mathrm{~h}$
H $3 \frac{1}{2} h$
J $4 \frac{1}{8} \mathrm{~h}$

Whenever you multiply fractions, write the product in simplest form.

Multiply. Write the product in simplest form.

1. $\frac{1}{2} \times \frac{1}{3}=$ \qquad
$\frac{1}{2} \times \frac{5}{6}=$
\qquad $\frac{1}{2} \times \frac{3}{4}=$ \qquad
2. $\frac{1}{3} \times \frac{2}{5}=$ \qquad
$\frac{3}{4} \times \frac{1}{3}=$ \qquad
$\frac{2}{3} \times \frac{3}{4}=$ \qquad
3. $\frac{3}{5} \times \frac{1}{4}=$ \qquad
$\frac{3}{8} \times \frac{1}{2}=$ \qquad
$\frac{3}{5} \times \frac{3}{4}=$ \qquad
4. $\frac{5}{8} \times \frac{3}{4}=$ \qquad
$2 \times \frac{2}{3}=$ \qquad
$2 \times \frac{1}{3}=$ \qquad
5. $5 \times \frac{3}{4}=$ \qquad
$7 \times \frac{1}{2}=$ \qquad
$6 \times \frac{1}{2}=$ \qquad
6. $\frac{3}{8} \times \frac{8}{3}=$ \qquad $\frac{2}{5} \times \frac{4}{7}=$ \qquad $\frac{3}{8} \times \frac{2}{2}=$ \qquad
7. $\frac{3}{4} \times 7=$ \qquad
$\frac{3}{8} \times \frac{5}{3}=$ \qquad
$\frac{5}{6} \times \frac{3}{3}=$ \qquad
8. $\frac{4}{3} \times 5=$ \qquad
$\frac{2}{7} \times \frac{3}{4}=$ \qquad
$5 \times \frac{1}{5}=$ \qquad

If a numerator and a denominator have a common factor, you can simplify before you multiply by dividing the numerator and denominator by the common factor.
$\frac{5}{6} \times \frac{2}{3}$
$\frac{5}{6} \times \frac{1}{3}=\frac{5}{9}$
$\underbrace{\text { Divide } 2 \text { and } 6 \text { by } 2 .}$

$$
\begin{aligned}
& 6 \times \frac{3}{4} \\
& \begin{aligned}
\frac{3}{1} \times \frac{3}{4} & =\frac{9}{2} \\
& =4 \frac{1}{2}
\end{aligned} \\
& \underbrace{}_{\text {Divide } 6 \text { and } 4 \text { by } 2 .}
\end{aligned}
$$

$$
\frac{6}{8} \times \frac{8}{12}
$$

$$
\frac{6}{8} \times \frac{1}{12}=\frac{1}{2}
$$

Multiply. Write each product in simplest form.
9. $\frac{3}{4} \times \frac{1}{6}=$ \qquad
$6 \times \frac{1}{2}=$ \qquad
$\frac{4}{5} \times \frac{5}{6}=$ \qquad
10. $\frac{1}{6} \times 3=$ \qquad
$2 \times \frac{3}{8}=$ \qquad
$\frac{3}{10} \times \frac{5}{8}=$
\qquad
11. $\frac{4}{5} \times \frac{2}{3}=$ \qquad
$\frac{3}{8} \times 12=$ \qquad
$\frac{1}{2} \times \frac{1}{6}=$ \qquad
12. $\frac{3}{4} \times \frac{5}{8}=$ \qquad
$\frac{1}{2} \times \frac{1}{4}=$ \qquad
$\frac{3}{4} \times \frac{1}{3}=$ \qquad
13. $\frac{3}{4} \times \frac{2}{9}=$ \qquad
$\frac{2}{3} \times \frac{2}{3}=$ \qquad
$\frac{15}{6} \times \frac{3}{25}=$
\qquad

Problem Solving Reasoning

14. Mandy's father has $\frac{1}{2}$ of a box of tiles to use in a mosaic picture. Of those tiles, $\frac{1}{4}$ will be used to make a border. What fraction of a whole box of tiles will be used for the border? \qquad

Test Prep \star Mired Review

(15. What do you need to do to each side of this equation to solve it?

$$
x-34,608=85,209
$$

A Add x
B Add 34,608
C Subtract 85,209
D Subtract 34,608

16 Michaela is $4 \frac{1}{3}$ feet tall. Her sister Catherine is $\mathbf{3} \frac{\mathbf{1}}{\mathbf{2}}$ feet tall. How much taller is Michaela than Catherine?
F $1 \frac{5}{6} \mathrm{ft}$
H $\frac{5}{6} \mathrm{ft}$
G 1 ft
J $\frac{1}{6} \mathrm{ft}$

You can use compatible numbers to estimate a fraction of a whole number.
$\frac{1}{2}$ of 25
Think of a number close to $\mathbf{2 5}$ that you can find $\frac{1}{2}$ of easily. Try 24.

$$
\begin{aligned}
& \frac{1}{2} \text { of } 24 \text { is } 12 . \\
& \frac{1}{2} \text { of } 25 \text { is about } 12 \text {. }
\end{aligned}
$$

$\frac{2}{3}$ of 31
Think of a number close to 31 that you can find $\frac{2}{3}$ of easily. Try 30.

$$
\begin{aligned}
& \frac{2}{3} \text { of } 30 \text { is } 20 . \\
& \frac{2}{3} \text { of } 31 \text { is about } 20 .
\end{aligned}
$$

You can multiply to find a fraction of a whole number or of another fraction. Use your estimate to determine if your answer is reasonable.

Find $\frac{3}{8}$ of 70 .
Estimate: $\frac{3}{8}$ of 72 or 27
$\frac{3}{8}$ of $70=\frac{3}{8} \times \frac{70}{1}$
$=\frac{3}{8} \times \frac{720}{1}$
$=\frac{105}{4}$ or $26 \frac{1}{4}$

Find $\frac{2}{3}$ of $\frac{6}{7}$.
Estimate: $\frac{2}{3}$ of 1 or $\frac{2}{3}$
$\frac{2}{3}$ of $\frac{6}{7}=\frac{2}{3} \times \frac{6}{7}$

$$
\begin{aligned}
& =\frac{2}{77} \times \frac{2}{7} \\
& =\frac{4}{7}
\end{aligned}
$$

Estimate.

1. $\frac{1}{2}$ of 19 is about \qquad $\frac{1}{4}$ of 22 is about \qquad
2. $\frac{2}{3}$ of 34 is about \qquad $\frac{3}{4}$ of 37 is about \qquad

Estimate first. Then solve.

3. $\frac{3}{4}$ of $28=$ \qquad
$\frac{2}{3}$ of $18=$ \qquad

$$
\begin{aligned}
& \frac{5}{4} \text { of } 20= \\
& \frac{1}{2} \text { of } \frac{1}{10}=
\end{aligned}
$$

4. $\frac{2}{3}$ of $\frac{1}{2}=$ \qquad
$\frac{4}{5}$ of $\frac{2}{3}=$ \qquad

Estimate first. Then solve.
5. $\frac{4}{9}$ of 15 \qquad $\frac{7}{10}$ of 30 \qquad
$\frac{3}{8}$ of 28 \qquad
$\frac{1}{7}$ of 16
6. $\frac{8}{9}$ of 120 \qquad $\frac{1}{5}$ of $\frac{5}{7}$
$\frac{8}{11}$ of 44 \qquad $\frac{1}{2}$ of 19
7. $\frac{2}{3}$ of 31 \qquad
$\frac{3}{8}$ of $\frac{1}{2}$ \qquad
$\frac{1}{4}$ of 35 \qquad
$\frac{5}{7}$ of 28
8. $\frac{1}{16}$ of $\mathbf{2 0}$ \qquad $\frac{2}{3}$ of $\frac{1}{7}$ \qquad $\frac{2}{5}$ of $\frac{1}{3}$ \qquad $\frac{3}{4}$ of 16
\qquad
\qquad
\qquad
\qquad
Problem Solving
Solve. Reasoning
9. A baker made 100 dozen cookies. She sold $\frac{3}{5}$ of them before noon.

How many dozen were sold before noon? \qquad
10. One recipe required $\frac{3}{4}$ cup of flour. The baker doubled the recipe.

How much flour was used? \qquad
11. Left-over baked items are sold the next day at $\frac{2}{5}$ off the regular price.

How much will cookies cost if they are left-over and their regular price is $\$ 20$?

Auicts chects

Shade each rectangle to show the product. Write the product.
12.

13.

$$
\frac{3}{4} \times \frac{1}{2}
$$

\qquad $2 \frac{1}{3} \times \frac{3}{5}$

Find the product.
14. $\frac{1}{3} \times \frac{1}{6}$ \qquad 15. $\frac{1}{5} \times \frac{1}{7}$ \qquad 16. $\frac{2}{3} \times \frac{4}{5}$
19. $\frac{2}{5}$ of 22
18. $\frac{3}{4}$ of 12 \qquad
\qquad
\qquad
Work Space.

To estimate the product of two mixed numbers, you can round each mixed number to its nearest whole number.

Estimate $1 \frac{1}{6} \times 2 \frac{2}{3} \Rightarrow 1 \times 3=3$ The product of $1 \frac{1}{6} \times 2 \frac{2}{3}$ is close to 3 .
To multiply a mixed number by a mixed number, first change both mixed numbers to fractions. Then multiply and simplify.
Multiply $\quad 1 \frac{1}{6} \times 2 \frac{2}{3}=\frac{7}{6} \times \frac{8}{3}$

$$
1 \frac{1}{6}=\frac{1 \times 6+1}{6} \text { or } \frac{7}{6}
$$

$$
\begin{aligned}
& =\frac{7}{6 / 3} \times \frac{4}{3} \\
& =\frac{28}{9} \text { or } 3 \frac{1}{9}
\end{aligned}
$$

$$
2 \frac{2}{3}=\frac{2 \times 3+2}{3} \text { or } \frac{8}{3}
$$

Estimate. Then multiply and write each product in simplest form.
Use your estimate to decide if your answer is reasonable.

1. $1 \frac{2}{3} \times 2 \frac{1}{2}=$ \qquad
$3 \frac{1}{2} \times 1 \frac{3}{4}=$ \qquad

$$
1 \frac{1}{2} \times 1 \frac{1}{3}=
$$

\qquad
2. $2 \frac{1}{8} \times 1 \frac{3}{4}=$ \qquad
$3 \frac{1}{5} \times 2 \frac{1}{2}=$ \qquad
$1 \frac{1}{4} \times 3 \frac{1}{2}=$ \qquad
3. $2 \frac{2}{5} \times 1 \frac{2}{3}=$ \qquad
$4 \frac{3}{4} \times 3 \frac{1}{5}=$ \qquad
$3 \frac{2}{3} \times 1 \frac{1}{3}=$ \qquad
4. $7 \times 2 \frac{5}{8}=$ \qquad
$2 \frac{1}{3} \times 4 \frac{1}{2}=$ \qquad
$2 \frac{3}{4} \times 2=$ \qquad
5. $3 \times 5 \frac{1}{2}=$ \qquad
$5 \frac{1}{2} \times 4 \frac{3}{4}=$ \qquad
$2 \frac{4}{5} \times 3=$ \qquad
6. $6 \times 4 \frac{3}{8}=$ \qquad

$$
3 \frac{1}{2} \times 2=
$$

$$
3 \frac{3}{4} \times 7=
$$

\qquad
7. $2 \frac{1}{4} \times 3 \frac{1}{2}=$ \qquad
$2 \frac{1}{5} \times 3=$ \qquad
$5 \frac{3}{4} \times 2 \frac{1}{2}=$ \qquad
8. $4 \frac{2}{3} \times 2 \frac{3}{4}=$ \qquad $3 \frac{1}{4} \times 6=$ \qquad $3 \frac{1}{6} \times 2 \frac{2}{3}=$ \qquad
9. $4 \frac{1}{2} \times 2 \frac{5}{6}=$ \qquad $1 \frac{1}{2} \times 4 \frac{2}{3}=$ \qquad $3 \frac{2}{3} \times 4 \frac{1}{3}=$ \qquad
10. $6 \times 6 \frac{1}{4}=$ \qquad $1 \frac{3}{5} \times 2 \frac{1}{2}=$ \qquad $5 \frac{3}{8} \times 4 \frac{1}{5}=$ \qquad
Problem Solving Reasoning

Solve. Use this recipe.

Chillaquillas (Serves 8)

1 dozen tortillas	$\frac{2}{3}$ cup chopped green onions
$\frac{1}{2}$ pound jack cheese (about $2 \frac{1}{2}$ cups grated)	2 teaspoons chili powder
$1 \frac{1}{2}$ cups tomato sauce	$\frac{1}{2}$ teaspoon crushed oregano
$1 \frac{1}{2}$ cups low-fat cottage cheese	$\frac{1}{4}$ cup oil
	1 teaspoon salt

11. What number should the recipe be multiplied by to serve 12 people? \qquad
12. How much tomato sauce is required if the recipe is multiplied by $1 \frac{1}{2}$? \qquad
13. How many cups of chopped green onions will be needed if the recipe is tripled?

Lest Rrep + Mixed Review

17 Patrick is buying cheese at the store. The cheese costs $\$ 2.98$ a pound. Which expression shows how much n pounds of cheese will cost?
A $2.98+n$
C 2.98 n
B $2.98-n$
D $2.98 \div n$
12. How much oil is required
if the recipe is doubled?
14. How many cups of grated jack cheese are needed for $\frac{1}{2}$ the recipe?
\qquad
16. In the recipe, how much more chili powder than oregano is used?

18 Ms. Parker had 600 sheets of construction paper. Her class used $\frac{5}{8}$ of the paper. How many sheets of paper did the class use?
F 375
H 75
G 120
J 58

Two numbers are reciprocals of each other when their product is 1.
$\frac{2}{3}$ and $1 \frac{1}{2}$ are reciprocals, because $1 \frac{1}{2}=\frac{3}{2}$ and $\frac{2}{3} \times \frac{3}{2}=\frac{6}{6}$ or 1 .
$1 \frac{3}{4}$ and $\frac{4}{7}$ are reciprocals, because $1 \frac{3}{4}=\frac{7}{4}$ and $\frac{7}{4} \times \frac{4}{7}=\frac{28}{28}$ or 1 .
The number 0 has no reciprocal.

Write the reciprocal of the number.

1. $\frac{2}{3}$ \qquad
7 \qquad
$\frac{4}{9}$ \qquad
$\frac{1}{3}$ \qquad
$\frac{8}{5}$
4 \qquad
2. $4 \frac{1}{2}$ \qquad
$2 \frac{4}{5}$ \qquad
1 \qquad
10
$7 \frac{2}{9}$ \qquad
$\frac{1}{8}$ \qquad
3. 5 \qquad
$\frac{3}{4}$ \qquad
$2 \frac{1}{2}$ \qquad
$\frac{7}{3}$ \qquad
$\frac{1}{2}$
$4 \frac{3}{8}$ \qquad
4. $11 \frac{1}{3}$ \qquad
$6 \frac{1}{8}$ \qquad
$\frac{5}{7}$
$\frac{10}{9}$ \qquad 2
100

Complete. Write your answer in simplest form.
5. $\frac{2}{3} x$ \qquad $=1$
$\times \frac{4}{7}=1$
$\frac{2}{5} \times \frac{5}{2}=$ \qquad
6. $4 \frac{2}{3} \times$ \qquad $=1$
$\times 3 \frac{1}{7}=1$
$\frac{3}{5} \times \quad=1$
7. $\times 5=1$
$\times \frac{1}{7}=1$
$\ldots \frac{5}{2}=1$
8. $\quad \times \frac{6}{8}=1$
$\times \frac{4}{7}=1$
$\frac{1}{10} \times \square=1$
9. $\frac{5}{13} \times$ \qquad

$$
=1
$$

$\times 1 \frac{5}{13}=1$
$\ldots \times 10 \frac{1}{5}=1$
10.

$$
\frac{3}{4} \times \quad=1
$$

$\frac{3}{7} \times \frac{7}{3}=$ \qquad
11. $3 \frac{3}{5} \times \quad=1$

$$
\ldots 2 \frac{1}{3}=1
$$

$$
\times \frac{1}{5}=1
$$

12.

$\frac{7}{8} \times$ \qquad
$\frac{5}{9} \times$ \qquad
13. What is the product of $\frac{3}{5}$ and the reciprocal of $\frac{1}{15}$?
\qquad
14. What is the product of $\frac{7}{22}$ and the reciprocal of $\frac{3}{11}$?
\qquad
15. Nancy is 2 times as old as her cousin. What fraction describes how old her cousin is compared to Nancy?
\qquad
16. If Frank traveled 3 times faster than he planned to travel on a trip, what fraction describes the time the trip took?
\qquad
17. Monroe spent $\frac{2}{3}$ of his money. What fraction of his money was not spent? \qquad
18. Elizabeth ran a race twice as fast as Julie. What fraction describes how fast Elizabeth ran the race compared to Julie?
19. If a fraction is between 0 and 1 , what can you say about the reciprocal of the fraction?
\qquad
20. If a number is greater than $\mathbf{1}$, what can you say about the reciprocal of the number?
\qquad
21. Does every whole number have a reciprocal? Explain.

Test Prep + Mixed Review

(22) Luisa's cat weighs 10.937 pounds. What is that number rounded to the nearest tenth?
A 10
C 10.93
B 10.9
D 10.94

23 What is the greatest common factor of $\mathbf{6 0}, 75$, and 90?
F 30
H 3
G 15
J 1

You can use models to find the quotient $\frac{5}{2} \div \frac{3}{4}$, or the number of $\frac{3}{4}$'s in $\frac{5}{2}$.
Represent $\frac{5}{2}$ as its equivalent fraction in fourths. Circle the number of $\frac{3}{4}$ 'sin $\frac{10}{4}$.

$$
\frac{5}{2}=\frac{10}{4}
$$

$3 \frac{1}{3}$ sets of $\frac{3}{4} \quad \frac{5}{2} \div \frac{3}{4}=3 \frac{1}{3}$
To find $\frac{5}{2} \div \frac{3}{4}$, you could also multiply $\frac{5}{2}$ by the reciprocal of $\frac{3}{4}$.
$\frac{5}{2} \times \frac{2}{3} \rightarrow \frac{10}{3}=3 \frac{1}{3}$
Complete.

1. $\frac{7}{2} \div \frac{1}{2}=$ \qquad
$\frac{7}{2} \times \frac{2}{1}=$ \qquad
2. $\frac{9}{2} \div \frac{1}{2}=$ \qquad 3. $\frac{4}{2} \div \frac{1}{2}=$ \qquad
$\frac{9}{2} \times \frac{2}{1}=$ \qquad

$$
\frac{4}{2} \times \frac{2}{1}=
$$

\qquad
4. $\frac{8}{2} \div \frac{1}{2}=$ \qquad
5. $\frac{4}{3} \div \frac{2}{3}=$ \qquad
6. $\frac{8}{3} \div \frac{2}{3}=$ \qquad
$\frac{8}{2} \times \frac{2}{1}=$ \qquad $\frac{4}{3} \times \frac{3}{2}=$ \qquad

$$
\frac{8}{3} \times \frac{3}{2}=
$$

\qquad
7. $\frac{2}{3} \div \frac{2}{3}=$ \qquad
$\frac{2}{3} \times \frac{3}{2}=$ \qquad
8. $\frac{6}{3} \div \frac{2}{3}=$ \qquad 9. $\frac{6}{4} \div \frac{3}{4}=$ \qquad
$\frac{6}{3} \times \frac{3}{2}=$ \qquad $\frac{6}{4} \times \frac{4}{3}=$ \qquad
10. $\frac{15}{4} \div \frac{3}{4}=$ \qquad
$\frac{15}{4} \times \frac{4}{3}=$ \qquad
11. $\frac{4}{12} \div \frac{2}{3}=$ \qquad 12. $\frac{6}{12} \div \frac{3}{4}=$ \qquad
$\frac{4}{12} \times \frac{3}{2}=$ \qquad $\frac{6}{12} \times \frac{4}{3}=$ \qquad
13. $\frac{1}{2} \div \frac{1}{4}=$ \qquad 14. $\frac{7}{8} \div \frac{7}{10}=$ \qquad 15. $\frac{12}{30} \div \frac{4}{15}=$ \qquad
$\frac{7}{8} \times \frac{10}{7}=$ \qquad
$\frac{12}{30} \times \frac{15}{4}=$ \qquad

Divide. Write each quotient in simplest form.
16. $\frac{5}{6} \div \frac{5}{9}=$ \qquad
$\frac{3}{4} \div \frac{5}{2}=$ \qquad $\frac{4}{5} \div \frac{4}{3}=$ \qquad
17. $\frac{3}{8} \div \frac{3}{4}=$ \qquad
$\frac{5}{8} \div \frac{1}{8}=$ \qquad
$\frac{4}{7} \div \frac{2}{7}=$ \qquad
18. $\frac{5}{8} \div \frac{3}{4}=$ \qquad
$\frac{2}{5} \div \frac{4}{5}=$ \qquad
$\frac{5}{4} \div \frac{1}{2}=$ \qquad
19. $\frac{7}{8} \div \frac{3}{4}=$ \qquad $\frac{7}{9} \div \frac{2}{3}=$ \qquad
$\frac{4}{7} \div \frac{1}{2}=$
\qquad

Problem Solving

Solve. Reasoning
20. If the length of one of Rick's steps is $2 \frac{1}{3} \mathrm{ft}$, how many steps will he take in a distance of 220 ft ? \qquad

Quick Check

Write the mixed number as a fraction.
21. $2 \frac{2}{3}$
22. $4 \frac{3}{5}$

Write the reciprocal in simplest form.
23. $\frac{2}{3}$
24. $3 \frac{1}{6}$

Find the product.
25. $3 \frac{3}{4} \times \frac{4}{5}$
26. $1 \frac{5}{8} \times 4 \frac{4}{7}$
27. $2 \frac{1}{2} \times 3 \frac{5}{9}$

Find the quotient.
28. $3 \frac{1}{3} \div \frac{5}{6}$
29. $3 \frac{3}{10} \div \frac{3}{5}$
30. $4 \frac{1}{2} \div \frac{3}{4}$

Work Space.

To divide a fraction by a whole number, multiply the fraction by the reciprocal of the whole number.

$$
\begin{aligned}
\frac{6}{7} \div 3 & =\frac{6}{7} \div \frac{3}{1} \\
& =\frac{6}{7} \times \frac{1}{3} \\
& =\frac{2}{7} \times \frac{1}{77} \\
& =\frac{2}{7}
\end{aligned}
$$

To divide a whole number by a fraction, multiply the whole number by the reciprocal of the fraction.

$$
\begin{aligned}
5 \div \frac{3}{4} & =\frac{5}{1} \div \frac{3}{4} \\
& =\frac{5}{1} \times \frac{4}{3} \\
& =\frac{20}{3} \\
& =6 \frac{2}{3}
\end{aligned}
$$

Divide. Write each quotient in simplest form.

1. $\frac{4}{9} \div 6=$ \qquad

$$
\frac{3}{5} \div 4=
$$

$\frac{3}{4} \div 5=$
\qquad
2. $\frac{5}{8} \div 5=$ \qquad

$$
\frac{9}{10} \div 4=\quad \frac{1}{6} \div 3=
$$

\qquad
3. $\frac{9}{4} \div 6=$ \qquad
$\frac{5}{3} \div 4=$ \qquad

$$
\frac{4}{3} \div 5=
$$

\qquad
4. $\frac{8}{5} \div 5=$ \qquad $\frac{10}{9} \div 4=$ \qquad $\frac{7}{4} \div 3=$ \qquad
5. $8 \div \frac{2}{3}=$ \qquad
$10 \div \frac{4}{5}=$ \qquad $9 \div \frac{2}{3}=$ \qquad
6. $5 \div \frac{3}{2}=$ \qquad
$8 \div \frac{5}{4}=$ \qquad
$6 \div \frac{3}{2}=$ \qquad
7. $\frac{1}{2} \div \frac{2}{3}=$ \qquad
$\frac{4}{9} \div \frac{1}{3}=$ \qquad
$\frac{3}{2} \div \frac{3}{4}=$ \qquad
8. $\frac{1}{8} \div \frac{9}{5}=$ \qquad
$\frac{1}{5} \div \frac{5}{4}=$ \qquad
$3 \div \frac{2}{3}=$ \qquad
9. $\frac{3}{10} \div \frac{1}{5}=$ \qquad $5 \div \frac{5}{3}=$ \qquad

$$
6 \div \frac{3}{8}=
$$

\qquad
10. $\frac{5}{8} \div 2=$ \qquad

$$
\frac{3}{8} \div 5=
$$

$$
\frac{1}{4} \div \frac{7}{8}=
$$

\qquad
11. $\frac{3}{10} \div \frac{3}{4}=$ \qquad

$$
\frac{1}{2} \div \frac{7}{2}=
$$

$\frac{3}{4} \div \frac{3}{4}=$ \qquad
12. $9 \div \frac{3}{5}=$ \qquad $\frac{7}{12} \div 7=$ \qquad $\frac{1}{3} \div \frac{5}{9}=$ \qquad

Problem Solving
Solve.
Reasoning
13. Ryan has $3 \frac{1}{2}$ feet of licorice to share equally with 5 friends and himself. How many feet will each person receive?
15. Each bead on Maria's necklace is $\frac{1}{8}$ inch long. All the beads together measure $\frac{3}{4}$ inch. How many beads are a part of her necklace?
14. Kim has $\frac{3}{4}$ of a pound of grapes. If she eats the same amount each day for 5 days, how much does she eat each day?
16. When a mixed number is divided by a whole number, is the quotient greater than, less than, or equal to the mixed number?
\qquad

Test Prep * Mixed Review

17 A relay team ran a race. Each team member $\operatorname{ran} \frac{1}{4}$ of the distance. The whole race was $\frac{8}{9}$ mile. How far did each team member run?
A $1 \frac{5}{36} \mathrm{mi}$
B $\frac{8}{9} \mathrm{mi}$
C $\frac{9}{32} \mathrm{mi}$
D $\frac{2}{9} \mathrm{mi}$

18 What is the prime factorization of 66?
F 6×11
G 2×33
H $2 \times 3 \times 11$
J 1×66

To divide mixed numbers, write each mixed number as a fraction.
Then divide and simplify. Use estimation to check the reasonableness of your answer.
Estimate: $\begin{aligned} & 2 \frac{4}{5} \div 1 \frac{1}{6} \\ & \downarrow \\ & 3 \downarrow \\ & \\ & \\ &=\frac{14}{5} \times \frac{6}{7} \\ &=\frac{12}{5} \text { or } 2 \frac{2}{5}\end{aligned}$

The quotient $\mathbf{2} \frac{\mathbf{2}}{5}$ is close to the estimate 3 . So the answer is reasonable.

Divide. Write the quotient in simplest form.
Use estimation to check the reasonableness of your answer.

1. $3 \frac{1}{2} \div 1 \frac{3}{4}=$
$9 \div 2 \frac{2}{3}=$ \qquad $10 \frac{3}{4} \div 2=$ \qquad
2. $5 \frac{1}{4} \div 3=$ \qquad

$$
3 \frac{1}{2} \div 2=
$$

$11 \frac{1}{2} \div 2 \frac{7}{8}=$ \qquad
3. $4 \frac{1}{4} \div 3 \frac{1}{8}=$ \qquad
$3 \frac{3}{4} \div 5=$ \qquad
$6 \frac{1}{3} \div 2=$ \qquad
4. $8 \div 1 \frac{1}{5}=$ \qquad
$2 \frac{1}{2} \div 2 \frac{1}{2}=$ \qquad
$12 \frac{3}{8} \div 2 \frac{3}{4}=$ \qquad
5. $5 \frac{3}{5} \div 4 \frac{2}{3}=$ \qquad $2 \frac{7}{8} \div 3 \frac{1}{4}=$ \qquad $9 \div 2 \frac{5}{8}=$ \qquad
6. $7 \frac{1}{2} \div 2 \frac{1}{2}=$ \qquad
$1 \frac{1}{4} \div 2 \frac{1}{2}=$
$4 \frac{1}{2} \div 1 \frac{1}{3}=$ \qquad
7. $7 \div 3 \frac{1}{2}=$ \qquad
$7 \div 2 \frac{1}{3}=$ \qquad
$4 \frac{1}{6} \div 5=$ \qquad
8. $2 \frac{3}{4} \div 5 \frac{2}{3}=$ \qquad
$4 \frac{7}{8} \div 6 \frac{1}{4}=$ \qquad $4 \frac{3}{8} \div 4=$ \qquad
9. $10 \frac{1}{2} \div 2 \frac{1}{4}=$ \qquad
$6 \frac{2}{3} \div 5 \frac{1}{3}=$ \qquad
$6 \frac{3}{4} \div 3 \frac{1}{2}=$ \qquad

Divide. Write each quotient in simplest form.
10. $\frac{3}{5} \div \frac{5}{6}=$ \qquad

$$
\frac{7}{6} \div \frac{3}{4}=
$$

\qquad

$$
\frac{3}{4} \div \frac{5}{2}=
$$

\qquad
11. $\frac{1}{3} \div \frac{1}{5}=$ \qquad

$$
\frac{4}{5} \div \frac{10}{3}=\quad \frac{9}{2} \div \frac{8}{3}=
$$

\qquad
12. $1 \frac{2}{3} \div 2 \frac{1}{3}=$ \qquad
$6 \frac{7}{8} \div 1 \frac{3}{4}=$ \qquad

$$
8 \div 3 \frac{1}{4}=
$$

\qquad
13. $4 \frac{2}{5} \div 3=$ \qquad $6 \div 1 \frac{2}{3}=$ \qquad $3 \frac{1}{2} \div 2 \frac{1}{4}=$ \qquad
14. $10 \frac{1}{2} \div 1 \frac{3}{4}=$ \qquad $2 \frac{2}{3} \div 1 \frac{3}{4}=$ \qquad

$$
1 \frac{1}{3} \div 4=
$$

\qquad
15. $9 \frac{1}{3} \div 2 \frac{3}{4}=$ \qquad $4 \frac{2}{5} \div 3 \frac{3}{4}=$ \qquad $8 \div 6 \frac{1}{4}=$ \qquad

Problem Solving Solve.

Reasoning

16. A box contains $\mathbf{1 0}$ ounces of cereal. If one serving is $1 \frac{1}{4}$ ounces, how many servings are in the box? \qquad
17. Ten melons weigh $17 \frac{1}{2}$ pounds. What is the average weight of each melon?
18. A can contains 3 servings of soup. If one serving is $6 \frac{1}{4}$ ounces, how many ounces are in a can? \qquad
19. Margaret had $5 \frac{3}{4}$ cups of flour. She used one-half of it to make bread. How much flour did she use? \qquad

Test Prep $*$ Mixed Review

(21) Will has $\$ 31.92$. He wants to buy as many posters as he can. Each poster costs $\$ 7.98$. How many posters can he buy?
A 3
B 4
C 5
D 6

21 Which answer shows equivalent fractions?
F $\frac{2}{12}, \frac{3}{18}, \frac{1}{6}$
G $\frac{1}{4}, \frac{1}{2}, \frac{1}{3}$
H $\frac{2}{4}, \frac{3}{6}, \frac{3}{5}$
J $\frac{2}{3}, \frac{3}{2}, \frac{1}{3}$

Sometimes you can draw a picture to help you solve a problem. Or, the picture itself may be the solution to the problem.

In this lesson, you will draw pictures to solve problems. Some of the problems may have more than one solution.

Problem

On dot paper, draw 6 different triangles that each have an area of 2 square units.

(1) Understand

As you reread, ask yourself questions.

- What does the problem ask you to do?

Draw 6 different triangles that each have an area of
\qquad square units.

- Any triangle can be thought of as half of a parallelogram. If the area of a parallelogram is $\mathbf{4}$ square units, what is the area of the triangle?

2 Decide

Choose a method for solving.
Try the strategy Draw a Picture.

- Complete the parallelograms below.

- Does each parallelogram have an area of 4 square units? \qquad

(3) Solve

Shade half of each parallelogram to make a triangle.

- Be sure each triangle is different.

4 Look back Check your answer.

- What is the area of each triangle? \qquad
- There are other solutions to this problem. Draw another triangle that has an area of $\mathbf{2}$ square units.

Solve. Use the Draw a Diagram strategy or any other strategy you have learned.

1. Draw two triangles that each have an area of 3 square units.

Think: How many half units equal one whole unit?

3. Marcia has some nickels and pennies. She has $\mathbf{2 2}$ coins in all and the total value of the coins is $\mathbf{\$. 9 4}$. How many of each coin does she have?
5. How many oatmeal squares 2 inches by 3 inches can you cut from a pan that is 8 inches by 12 inches?
7. Make a list of all 3-digit numbers for which each digit is a multiple of 3 and no two digits are the same.
9. Samantha is thinking of a number. If you add 2.3 to it and then multiply the sum by 1.9, the result is $\mathbf{1 2 . 3 5}$. What is Samantha's number?
11. Tom wants to fence a field. It goes 40 m due west, then 25 m due south, then 8 m due east, then 10 m due north, then 32 m due east, and then back to the starting point. How much fencing does he need?
2. Draw two triangles that each have an area of $2 \frac{1}{2}$ square units.
Think: The area of a triangle is half the area of what polygon?

4. Sean has some quarters and dimes. He has 14 coins in all and the total value of the coins is $\$ 2.75$. How many of each coin does he have?
6. How many oatmeal squares $1 \frac{1}{2}$ inches square can you cut from a pan that is 9 inches square?
8. Make a list of all 2-digit numbers for which each digit is a prime number.
\qquad
\qquad
10. Jamie is thinking of a number. If you subtract 3.5 from it and then divide the difference by 5 , the result is $\mathbf{1 . 1 4 2}$. What is Jamie's number?
12. A kitchen is rectangular. Its length is 2 ft more than its width and its area is 120 ft . What are the length and width of the kitchen?

You can use inverse operations to solve equations that contain fractions.

1. The inverse of subtracting $\frac{3}{4}$ is adding $\frac{3}{4}$.
2. Add $\frac{3}{4}$ to both $\quad n-\frac{3}{4}+\frac{3}{4}=\frac{2}{4}+\frac{3}{4}$ sides of the equation.
3. Simplify.

$$
n=\frac{5}{4} \text { or } 1 \frac{1}{4}
$$

1. The inverse of adding $\frac{3}{4}$ is subtracting $\frac{3}{4}$.
2. Subtract $\frac{3}{4}$ from both $n+\frac{3}{4}-\frac{3}{4}=\frac{11}{12}-\frac{3}{4}$ sides of the equation.
3. Before subtracting, rewrite fractions with

$$
n=\frac{11}{12}-\frac{9}{12}
$$ a common denominator if necessary.

4. Simplify.

$$
n=\frac{2}{12} \text { or } \frac{1}{6}
$$

1. The inverse of dividing $\quad n \div \frac{3}{4}=\frac{20}{24}$ by $\frac{3}{4}$ is
multiplying by $\frac{3}{4}$.
2. First divide n $\left(n \times \frac{4}{3}\right) \times \frac{3}{4}=\frac{20}{24} \times \frac{3}{4}$ by $\frac{3}{4}$. So, multiply by the reciprocal.
3. Multiply.

$$
\begin{aligned}
n \times \frac{1}{3} \times \frac{1}{7} \times \frac{Z_{1}}{4} & =\frac{20}{24} \times \frac{\frac{1}{8}}{\frac{3}{4}} \\
n & =\frac{5}{8}
\end{aligned}
$$

4. Simplify.

Solve.

1. $n-\frac{3}{8}=\frac{2}{8}$

$$
\begin{aligned}
n+\frac{1}{2} & =2 \frac{1}{2} \\
n & =
\end{aligned}
$$

$$
n-\frac{3}{7}=\frac{1}{7}
$$

$$
n=
$$

\qquad

$$
n=
$$

\qquad
2. $n+\frac{1}{3}=\frac{4}{5}$

$$
n-\frac{7}{10}=\frac{2}{6}
$$

$$
n+\frac{2}{3}=\frac{11}{12}
$$

$$
n=
$$

\qquad
$n=$
$n=$ \qquad

Solve.
3. $n \times \frac{3}{8}=\frac{2}{8}$
$n \div \frac{1}{2}=\frac{7}{10}$
$n \div \frac{5}{6}=\frac{2}{6}$

$$
n=
$$

\qquad

$$
n=
$$

$$
n=
$$

\qquad
4. $n \times \frac{3}{10}=\frac{2}{3}$

$$
n \times \frac{1}{2}=\frac{1}{2}
$$

$n \div \frac{2}{9}=\frac{1}{5}$
$\boldsymbol{n}=$ \qquad

$$
n=
$$

\qquad

$$
n=
$$

\qquad
5. $n-\frac{1}{15}=\frac{3}{5}$
$n+\frac{7}{8}=3 \frac{1}{4}$
$n \times \frac{5}{6}=\frac{1}{3}$

$$
n=
$$

\qquad

$$
n=
$$

$$
n=
$$

\qquad
6. $n-6 \frac{1}{4}=3 \frac{5}{8}$
$n \div \frac{3}{10}=12$
$n \times \frac{3}{6}=1 \frac{1}{8}$

$$
n=
$$

$$
n=
$$

\qquad

$$
n=
$$

\qquad

Problem Solving

 ReasoningSolve. Write and solve an equation for each situation.
7. Misty made 15 cups of soup. She divided it into equal servings of $\frac{2}{3}$ cup each. How many servings does she have?
8. Mark's geometry assignment is to draw a rectangle with a length of $\frac{3}{4}$ inch. The area is to be $\mathbf{5}$ inches. What width should he use? \qquad

Quick Check

Write the quotient.
9. $2 \frac{1}{4} \div 5$ \qquad
10. $\frac{2}{3} \div 6$
\qquad 11. $1 \frac{2}{3} \div \frac{1}{5}$ \qquad
12. $3 \frac{3}{8} \div \frac{3}{5}$ \qquad 13. $1 \frac{1}{2} \div 1 \frac{3}{4}$ \qquad 14. $4 \frac{4}{5} \div 1 \frac{2}{3}$

Solve the equation.
15. $k+2 \frac{1}{2}=5 \frac{1}{4}$
\qquad 16. $\frac{9}{10}=\frac{s}{45}$ \qquad
\qquad

Write each sum, difference, product, or quotient in simplest form.

1. $2 \frac{1}{10}$
2. $\frac{1}{6}$
3. $5 \frac{3}{4}$
$+\frac{1}{3}$
4. $14 \frac{1}{8}$
$-\frac{1}{2}$
$+\frac{4}{9}$
$-7 \frac{2}{3}$
5. $\frac{2}{5} \times \frac{5}{9}$ \qquad
6. $\frac{7}{12} \div \frac{1}{4}$ \qquad 7. $1 \frac{1}{3} \div 6$
7. $7 \times 1 \frac{7}{12}$
\qquad

Solve. Write your answer in simplest form.
9. $\frac{3}{4}$ of $32=$
10. $\frac{5}{8}$ of $1 \frac{1}{2}=$ \qquad 11. $\frac{1}{16}$ of $40=$
\qquad

Solve for \boldsymbol{n}. Write your answer in simplest form.
12. $n+\frac{5}{8}=2 \quad n=$ \qquad
13. $n \times \frac{3}{8}=\frac{1}{8} \quad n=$ \qquad
14. $n \div \frac{2}{9}=18 \quad n=$ \qquad 15. $n-\frac{1}{4}=\frac{3}{4} \quad n=$ \qquad
16. $n \times 1 \frac{1}{3}=3 \quad n=$ \qquad 17. $n \div \frac{7}{10}=\frac{2}{3} \quad n=$ \qquad
18. $n-\frac{5}{6}=\frac{9}{24} n=$ \qquad 19. $n+\frac{4}{5}=3 \frac{1}{2} n=$ \qquad

Solve.
20. Suppose a pictograph was made to display the data in the table. One symbol on the pictograph would represent how many hours of studying? Explain.
\qquad
\qquad

Hours Studied Last Week	
Jason	12
Su	6
Reg	18
Marie	9

21. Without overlapping, what is the maximum number of $\mathbf{2 \times 4}$ rectangles that can be drawn on a $\mathbf{6 \times 1 0}$ grid? \qquad

1

| Sunny Days, By Month | | |
| :--- | :---: | :---: | :---: |
| May | | |
| June | | |
| July | | |
| August | | |
| September | | |
| Key: $=6$ days | | |

How many more sunny days were there in July than in May?
A 1
C 3
B 2
D 6

2 What do you need to do to each side of this equation to solve it?

$$
\frac{2}{3} n=\frac{8}{9}
$$

F Multiply by n.
G Multiply by $\frac{3}{2}$.
H Multiply by $\frac{2}{3}$.
J Multiply by $\frac{9}{8}$.
3 Martin has read $\frac{2}{5}$ of a book. He needs to read $\frac{3}{4}$ of it for school tomorrow. Which equation could be used to find how much more he needs to read?
A $\frac{2}{5}+p=\frac{3}{4}$
C $\frac{3}{4} p=\frac{2}{5}$
B $p-\frac{3}{4}=\frac{2}{5}$
D $\frac{2}{5} p=\frac{3}{4}$
(4) Which number is divisible by both 5 and 9?
F 18
H 40
K NH
G 25
J 45

5 Jessica has $2 \frac{3}{4}$ cups of sesame seeds. She needs $\frac{1}{4}$ cup for each batch of cookies she makes. How many batches can she make?
A 1
C 8
E NH
B 6
D 11

6 Stan's foot is $10 \frac{3}{8}$ inches long. How is that number written as a decimal?
F 10.3
H 10.38
K NH
G 10.375
J 10.385

7 How much closer to Centerville is Easton than West Lake?

A 3.15 km
C 4.15 km
B 3.85 km
D 4.85 km

8 What is the prime factorization of 60 ?
F $3 \times 4 \times 5$
G $2 \times 2 \times 3 \times 5$
H $2 \times 5 \times 6$
J $2 \times 3 \times 10$

UNIT 5 - TABLE OF CONTENTS

Measurement
Lesson
Page
1 Metric Units of Length 131
2 Metric Units of Capacity and Mass 133
3 Temperature: The Celsius Scale 135
4 Problem Solving Strategy: Use a Simpler Problem 137
5 Time Zones and Elapsed Time 139
6 Customary Units of Length 141
7 Customary Units of Capacity and Weight 143
8 Line Graphs and Fahrenheit Temperature 145
9 Problem Solving Application: Choose the Operation 147

- Unit 5 Review 149
- Cumulative Review \star Test Prep 150

Dear Family,

During the next few weeks, our math class will be learning about measurement. You can expect to see homework that provides practice with determining elapsed time. Here is a sample you may want to keep handy to give help if needed.

We will be using this vocabulary: meter (m) a basic unit of length in the metric system
liter (L) a unit of capacity in the metric system
Celsius temperature scale (${ }^{\circ} \mathrm{C}$) the temperature scale in the metric system in which the freezing temperature of water is $0^{\circ} \mathrm{C}$ and its boiling temperature is $10 \mathbf{0}^{\circ} \mathrm{C}$
Fahrenheit temperature scale (${ }^{\circ} \mathrm{F}$) the temperature scale that is used in the United States in which the freezing temperature of water is $32^{\circ} \mathrm{F}$ and its boiling temperature is $212^{\circ} \mathrm{F}$

Elapsed Time

The amount of time that passes between the start and end of an event is the elapsed time.

Example: A movie begins at 1:15 P.M. and ends at 3:30 p.M. To determine how much time elapsed from the beginning of the movie to the end, subtract.
$3: 30 \rightarrow 3 \mathrm{~h} 30 \mathrm{~min}$
$-1: 15 \rightarrow \frac{-1 \mathrm{~h} 15 \mathrm{~min}}{2 \mathrm{~h} 15 \mathrm{~min}}$

Some elapsed time problems require renaming 1 hour as 60 minutes.
Example: A student begins studying at 7:15 P.M. and stops at 9:05 p.M. To determine how much time the student spent studying, subtract.

9:05	\rightarrow	9 h 05 min	\rightarrow	${\stackrel{8}{g} \text { h } 055^{65} \text { in }}^{2}$
- 7:15	\rightarrow	-7h 15 min		- 7 h 15 min
		1 h 50 m		1 h 50 min

During this unit, students will need to continue to practice finding

The basic unit for measuring length in the metric system is the meter.

Look at the chart. Notice how the prefix of each unit of measure tells you how that unit of length is related to the meter. The dekameter and the decimeter are used less often than the other units.

A compact disc is about 1 millimeter thick.
A penny is about 2 centimeters wide.
A doorknob is about 1 meter above the floor. The distance from New York to San Francisco is about 4,720 kilometers.

To change from one unit of measure to another in the metric system, multiply or divide by a power of 10. Study the chart at the right.

Units of Measure

1 kilometer (km) = 1,000 meters
1 hectometer (hm) $=100$ meters
1 dekameter (da) $=10$ meters
1 decimeter (dm) $=0.1$ meter
1 centimeter (cm) $=0.01$ meter
1 millimeter (mm) $=0.001$ meter

Divide	Multiply		
To change from a			
lesser unit to a			
greater unit		\quad	To change from a
:---			
greater unit to a			
lesser unit			

What metric unit of length would you use to measure each item?

1. the width of a paper clip \qquad
2. the thickness of a rubber band \qquad
3. the length of your classroom \qquad
the length of a baseball bat \qquad the width of this book \qquad the distance to a city \qquad

Circle the greater length.
4. 10 cm or 96 mm
72 mm or 7 cm
3 m or 302 cm
5. 4 m or 380 cm
946 mm or 1 m
200 m or 215 cm

Complete the table. Each row should contain equivalent measures.

Kilometer	Meter	Decimeter	Centimeter	Millimeter	
6.	8				
7.		7			
8.			4,000		
9.				$1,600,000$	
10.			3,200		

Find the equivalent measure.
11. $2 \mathrm{~m}=$ \qquad cm
12. $400 \mathrm{~cm}=$ \qquad mm
\qquad m $6 \mathrm{dm}=$ \qquad mm
13. $300 \mathrm{~cm}=$ \qquad dm
14. $70 \mathrm{~mm}=$ \qquad m
\qquad km
47 km = \qquad m m $40 \mathrm{~cm}=$ \qquad dm
15. $5,000 \mathrm{~m}=$ Solve. Problem Solving Reasoning
16. One race in the Summer Olympic Games is 5,000 meters long. How many kilometers is that? \qquad

Test Prep \times Mixed Review

18 Michelle ran a race in 17.4 seconds. Lorna ran the same distance in $\mathbf{1 . 6 4}$ fewer seconds. How long did Lorna run?

A 19.04 s
B 15.86 s
C 15.76 s
D 15.7 s
17. In 1968, Bob Beamon set an Olympic long-jump record. He jumped 890.21 cm . How many meters is that, to the nearest meter? \qquad

The basic unit of capacity in the metric system is the liter (L). Science experiments and European recipes both use the metric system of capacity. Liquid products are often labeled in metric units.

Units of Capacity
1 liter (L) $\quad=1,000$ milliliters (mL)
1 milliliter $=\mathbf{0 . 0 0 1}$ liter
1 half liter = 500 milliliters

Estimate the capacity of the container in milliliters.

1. mug
2. soup bowl \qquad
3. water glass \qquad
soda can
small water bottle \qquad
small milk carton \qquad

Estimate the capacity of the container in liters.
4. milk carton \qquad laundry detergent bottle
5. flower vase \qquad small wastebasket

Circle the best estimate of the capacity of each item.
6. spoon

5 L
500 mL 5 mL
7. swimming pool

75 mL
750 L
75,000 L
8. aquarium

25 mL
25 L
250 mL
9. can of soup

3 mL
300 mL
300 L

Write the equivalent measure.
10. $3 \mathrm{~L}=$ \qquad mL
11. $250 \mathrm{~mL}=$ \qquad L
12. $0.4 \mathrm{~L}=$ \qquad mL
$2,000 \mathrm{~mL}=$ \qquad L
13. a half liter $=$ \qquad mL
$0.05 \mathrm{~L}=$ \qquad mL

Circle the greater capacity.
14. 5.0 mL or 0.05 L
15. 0.100 L or $1,000 \mathrm{~mL}$
16. 7.5 L or $7,500 \mathrm{~L}$
17. 900 mL or
0.19 L
3.4 L or 250 mL

12 L or $1,200 \mathrm{~mL}$ 400 mL or 4 L

900 L or 999 mL
2.15 L or 15 mL
3.500 mL or 35 mL
3.66 L or $\mathbf{6 , 0 0 0 . 3} \mathrm{mL}$
$1,000 \mathrm{~mL}$ or 10 L

The basic unit of mass in the metric system is the gram (\mathbf{g}). A new pencil has a mass of about 5 grams. The mass of a smaller object, such as a vitamin pill, is measured in milligrams (mg).

Units of Mass
1 metric ton $=1,000$ kilograms (kg)
1 kilogram $=1,000$ grams (g)
1 gram $=1,000$ milligrams (mg)

Estimate the mass of each item in grams.
18. pencil
small notebook \qquad pencil eraser
19. chalkboard eraser \qquad ballpoint pen \qquad clothespin

Circle the best estimate of the mass of each item.

20. paper clip	1 g	1 mg	1 kg
21. dictionary	2 kg	2 g	2 mg
22. sandwich	250 mg	250 g	250 kg
23. scissors	5.2 g	52 g	520 g
24. key	130 g	1.3 g	13 g
25. fried egg	50 mg	50 g	50 kg

Write the equivalent measure.
26. $3 \mathrm{~kg}=$ \qquad g
$15.2 \mathrm{~g}=$ \qquad mg
27. $10,000 \mathrm{~kg}=$ \qquad metric tons
$683 \mathrm{~g}=$ \qquad kg
28. $8.26 \mathrm{~kg}=$ \qquad g
29. $0.097 \mathrm{~kg}=$ \qquad g or \qquad mg
$5.7 \mathrm{mg}=$ \qquad g
\qquad
\qquad kg

Problem Solving
Solve.

Reasoning

30. If one new pencil has a mass of 5 g , how many new pencils would be needed to have a mass of 1 kg ? \qquad
31. If 1 pill contains 8 mg of medicine, how many pills could be made from 2 g of medicine? \qquad

Test Prep * Mixed Review

32 Mrs. Horn had a 25-pound bag of flour. Her daughter used some of the flour. Now Mrs. Horn has $\mathbf{2 3 . 6 6}$ pounds of flour. Which equation could be used to find how much flour (f) her daughter used?
A $23.66+f=25$
C $25 \div f=23.66$
B $23.66 f=25$
D $f-23.66=25$

33 What is the prime factorization of 72?
F $2 \times 2 \times 2 \times 9$
G $2 \times 2 \times 2 \times 3 \times 3$
H $2 \times 4 \times 3 \times 3$
J 8×9
\qquad

A thermometer measures temperature. A unit of measure for temperature is called the degree (${ }^{\circ}$). The thermometer pictured here shows temperature in degrees Celsius (${ }^{\circ} \mathrm{C}$). The boiling point of water in degrees Celsius is $100^{\circ} \mathrm{C}$. The freezing point of water is $0^{\circ} \mathrm{C}$. Study the thermometer at the right and read the temperatures shown.

Temperatures below freezing are sometimes written with a raised minus sign. You read ${ }^{-20^{\circ}}$ as " 20 degrees below 0."

Complete.

1. Normal body temperature is \qquad ${ }^{\circ} \mathrm{C}$.
2. If the temperature of your classroom were $15^{\circ} \mathrm{C}$, would you be cold? Write Yes or No. \qquad
3. When water turns to ice, you know that the temperature of the water has reached \qquad ${ }^{\circ} \mathrm{C}$.
4. What is the difference in degrees between the freezing and boiling points of water on the Celsius scale? \qquad

Complete each table. Use the thermometer to help you.

Temperature	Change	New Temperature
5.	$5^{\circ} \mathrm{C}$	rise of $2^{\circ} \mathrm{C}$
6.	$5^{\circ} \mathrm{C}$	fall of $8^{\circ} \mathrm{C}$
7.	$0^{\circ} \mathrm{C}$	
8.		fall of $15^{\circ} \mathrm{C}$

	Temperature	Change	New Temperature
9.	$7^{\circ} \mathrm{C}$		$-7^{\circ} \mathrm{C}$
10.	$24^{\circ} \mathrm{C}$		$21^{\circ} \mathrm{C}$
11.	$-8^{\circ} \mathrm{C}$	fall of $2^{\circ} \mathrm{C}$	
	$-8^{\circ} \mathrm{C}$	rise of $2^{\circ} \mathrm{C}$	

Write True or False for each statement.
13. The difference between ${ }^{-10}{ }^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ is the same as the difference between $5^{\circ} \mathrm{C}$ and $-5^{\circ} \mathrm{C}$. \qquad
14. On a hot summer day, the temperature would be below $15^{\circ} \mathrm{C}$.
15. The temperature of a warm bath will be $20^{\circ} \mathrm{C}$ or warmer. \qquad

The Science Club made a line graph of the average monthly temperature for eight months.

Complete each statement.

16. The average temperature in November was about \qquad ${ }^{\circ} \mathrm{C}$.
17. a. Which month was the coldest?
b. What was the average temperature for that month? \qquad -
18. What was the increase in average temperature from April to May?
\qquad degrees.
19. Between which two consecutive months was the average change the greatest? \qquad

Problem Solving Reasoning
20. Find the daily high temperatures of your city or town for a week by using a newspaper, radio, or TV weather broadcast.
Graph those temperatures on a separate sheet of graph paper.

\checkmark Quick Check

Write the equivalent units of length, mass, or capacity.
21. $200 \mathrm{~mm}=$ \qquad cm
22. $1.75 \mathrm{~m}=$ \qquad cm
23. $755 \mathrm{~mL}=$ \qquad L
24. $36 \mathrm{mg}=$ \qquad g

The thermometer shows the same scale as the one on p. 135. Use it to solve.
25. What temperature is shown on the thermometer?
26. At what temperature on this thermometer will water freeze? \qquad

Work Space.
\qquad

Sometimes you can solve a problem by looking at simpler similar problems and finding a pattern.

Problem

How many squares are on a checkerboard?

1 Understand As you reread, ask yourself questions.

- What are the different-size squares that are on the board?
\qquad

2 Decide

Choose a method for solving.
Size of board
Try the strategy $\quad 1 \times 12 \times 23 \times 34 \times 45 \times 5 \quad 6 \times 67 \times 78 \times 8$ Use a Simpler Problem.

- Make a chart to record the number of squares on a 1×1 board, a 2×2 board, and so on.

$$
1 \times 1,2 \times 2
$$

(3) Solve

Fill in the chart.

- Fill in the columns in the chart for the 1×1 board, the 2×2 board, the 3×3 board, and the 4×4 board.
- Look for a pattern that can help you complete the chart.
- Add the numbers in the last column. What is the total? \qquad

4 Look back
Answer \qquad

- What kind of numbers are in the chart? \qquad

Solve. Use the Use a Simpler Problem strategy or any other strategy you have learned.

Use this sequence of figures for problems 1 and 2.

Figure 1

Figure 2

Figure 3

1. If the pattern continues, how many
's will there be in Figure 6?
\qquad
2. If the pattern continues, how many
's will there be in Figure 6? \qquad

Use this sequence of figures for problems 3 and 4.

3. If the pattern continues, how many 's will there be in Figure 6? \qquad
5. The organizers of a celebration plan to release 100 balloons. They have purchased a 100 -yard spool of string. They plan to cut the string into 100 1-yard pieces. How many cuts will they have to make?
7. Write the next number in this sequence.
3.25, 6.5, 13, 26, \qquad
9. The sum of a number and one-half of the number is 5.7 . What is the number?
4. If the pattern continues, how many 's will there be in Figure 6? \qquad
6. Julian sold raffle tickets to earn money for a school play. The tickets were numbered in order. The first ticket he sold was numbered 389. The last ticket was numbered 521. How many tickets did Julian sell?
8. The sum of two numbers is 3 . Their product is 2.09. What are the numbers?
\qquad
10. Ten students will work in pairs for a social studies project. How many ways can the 10 students be paired?

All over the world, time is regulated by a single system called Standard Time. According to this system, the world is divided into regions called time zones. Within each time zone, a single time is used. In the continental United States, not including Alaska and Hawaii, there are four time zones. From east to west, they are the Eastern, Central, Mountain, and Pacific Standard Time.

The chart shows how the time changes as you travel from one zone to another. Look at the first row of the chart. It shows what time it is in each of the other zones when it is $\mathbf{1 : 0 0}$ in the Pacific Standard Time zone.

When it is 2:00 p.m. in Chicago, IL (Central Standard Time), what time is it in each city? Use A.M. and P.M.

1. Buffalo, NY \qquad
2. Dallas, TX \qquad
3. Phoenix, AZ \qquad

Atlanta, GA \qquad
Baltimore, MD \qquad
Portland, OR \qquad

Denver, CO \qquad
Los Angeles, CA \qquad
St. Louis, MO \qquad

Complete.

4. If it is $\mathbf{2 : 3 0}$ P.M. in the Eastern Standard Time zone, in the Pacific Standard Time zone it is \qquad
5. Joe lives in the Eastern Standard Time zone. At 9:00 p.M. he calls his aunt who lives in Montana. At his aunt's house the time is \qquad
6. If you travel across the country from the East to the Pacific Coast, do you gain or lose time? \qquad If you travel from the West to the Atlantic Coast, you \qquad time.

You can add, subtract, multiply, and divide with elapsed times.

The morning session in Sally's school lasts 2 h 45 min . The afternoon session lasts
2 h 15 min . What is the total number of hours and minutes of the two sessions?

$$
\begin{array}{r}
2 \mathrm{~h} 45 \mathrm{~min} \\
+2 \mathrm{~h} 15 \mathrm{~min} \\
\hline 4 \mathrm{~h} 60 \mathrm{~min}
\end{array}=5 \mathrm{~h} 0 \mathrm{~min} \text { or } 5 \mathrm{~h}
$$

To assemble 1 automobile part takes 4 minutes and 13 seconds. How much time will it take to assemble 10 parts?

$$
\begin{aligned}
& \frac{4 \mathrm{~min} 13 \mathrm{~s}}{\times 10} \\
& \frac{40 \mathrm{~min} 130 \mathrm{~s}}{4}=42 \mathrm{~min} 10 \mathrm{~s}
\end{aligned}
$$

It took Juan 3 min $10 s$ to do an exercise routine. Carlos did it in 1 min 55 s . How much longer did it take Juan?

70	First rename
7 min 10 s	3 min 10 s as
$-1 \mathrm{~min} 55 \mathrm{~s}$	2 min 70 s .

If Trina can assemble 8 parts in 33 minutes and 20 seconds, what is her average assembly time for 1 part?

4 min 10 s
$8 \longdiv { 3 3 \mathrm { min } 2 0 \mathrm { s } }$

- 32min

Rename 1 min 20 s as 80 s.
2-min 80 s

$$
\frac{-80 \mathrm{~s}}{0}
$$

Solve. Add, subtract, multiply, or divide.

7. $\quad 2 \mathrm{~h} 30 \mathrm{~min}$
+6 h 15 min

8. $14 \min 6 s$
$\times \quad 12$
$\begin{array}{r}4 h 20 \min \\ -2 h 40 \mathrm{~min} \\ \hline\end{array}$
2 h 15 min
-1 h 55 min
$\begin{array}{r}8 \mathrm{~h} 5 \mathrm{~min} \\ \times \quad 6 \\ \hline\end{array}$
\qquad
20 min 20 s
\times 15
$5 \longdiv { 3 0 \mathrm { h } 5 0 \mathrm { min } }$
$6 \longdiv { 6 \text { days } 1 2 h }$
$8 \longdiv { 2 \text { days } 8 \mathrm { min } }$

Problem Solving
Solve.
Reasoning
10. In 1952, Emil Zatopek of Czechoslovakia won the Olympic 5,000 meter run in 14 min 6 s . What was his average time per 1,000 meters? Give your answer to the nearest second.

Test Prep \star Mixed Review

11) Renee ran a 6.2 kilometer road race. How many meters is 6.2 kilometers?
A 6.2
C 620
B 62
D 6,200

12 Jenna made punch for a school party. She used 2 liters of sparkling water, 1.5 liters of orange juice, and $\mathbf{1 . 7 5}$ liters of pineapple juice. How much punch did she make?
F 5.25 L
H 3.75 L
G 4.25 L
J 3.5 L
\qquad

The chart shows the relationship between units of length in the Customary System.

Units of Length

12 inches (in.) = 1 foot (ft)
3 feet
$=1 \operatorname{yard}(y d)$
36 inches $=1$ yard
5,280 feet $=1$ mile (mi)
1,760 yards $=1$ mile

Write the unit of length you would use to measure each of the following. If you cannot use a unit of length, write an X in the blank.

1. The length of a rug
2. The weight of a dozen oranges \qquad
3. The distance from Canada to Mexico
4. The length of a pencil \qquad

Circle the greater length.

5. 11 in . or 1 ft	1 ft 6 in . or 16 in .	3 ft or 38 in .
6. 7 ft or 2 yd	1 ft 9 in . or 2 ft	4 ft 2 in . or 54 in .
7. $3 \frac{1}{2} \mathrm{ft}$ or 1 yd	29 in . or 2 ft	6 yards or 17 ft
8. $8,000 \mathrm{ft}$ or 1 mi	10,000 ft or 2 mi	6,000 yards or 3 mi
9. 110 in . or 3 yd	$3,510 \mathrm{ft}$ or 2 mi	$\mathbf{1 0 , 0 0 0 ~ f t ~ o r ~} 3 \mathrm{mi}$

Write the equivalent measure.
10. $6 \mathrm{ft}=$ \qquad in.

72 in. = \qquad $\frac{1}{2} \mathrm{mi}=$ \qquad
11. $\frac{1}{2} \mathrm{ft}=$ \qquad in.
$18 \mathrm{ft}=$ \qquad 6 in. $=$ \qquad ft
12. $1 \frac{1}{4} \mathrm{ft}=$ \qquad in.
$2 \mathrm{mi}=$ \qquad ft

6 in. $=$ \qquad
$1 \frac{1}{3} \mathrm{yd}=$ \qquad in.
13. $0.5 \mathrm{yd}=$ \qquad ft
$\frac{2}{3} \mathrm{yd}=$ \qquad ft
$2,640 \mathrm{ft}=$ \qquad mi
14. $5,280 \mathrm{yd}=$ \qquad mi

60 in. $=$ \qquad ft
15. 36 in. $=$ \qquad ft
16. $\frac{1}{10} \mathrm{mi}=$ \qquad ft
18 in. $=$ \qquad ft
$\frac{1}{12} \mathrm{yd}=$ \qquad in.
$176 \mathrm{yd}=$ \qquad mi \qquad in.

The length of the line segment measured to the
nearest inch (") is $\mathbf{2}$ in. nearest $\frac{1}{4}$ inch is $1 \frac{3^{\prime \prime}}{4}$.
nearest $\frac{1}{2}$ inch is $1 \frac{1}{2}^{\prime \prime}$. nearest $\frac{1}{8}$ inch is $1 \frac{5}{8}$ ".

Measure line segment $A B$ as indicated.

17. nearest inch \qquad nearest half-inch \qquad
18. nearest quarter-inch \qquad nearest eighth-inch \qquad

Draw a segment for each length.

19. $3 \frac{11}{2}$
20. $4 \frac{11}{4}$

Problem Solving Reasoning
21. If $\mathbf{2}$ curtains require fabric that is $\mathbf{7}$ yards long, how many curtains can be made from $17 \frac{1}{2}$ yards of fabric? \qquad
22. One necktie uses a 30 in . length of fabric. How many feet of fabric are needed to make 6 neckties? \qquad

(V) Quick Check

Find the elapsed time.
23. From 9:15 A.м. to $12: 33$ Р.м. 24. From $2: 34$ Р.м. to $4: 08$ Р.м.
25. From 6 P.M. in New York to 10:30 P.M. in Seattle (3 time zones west of New York)

Write the equivalent measure.
26. $20 \mathrm{ft}=$ \qquad yd
27. 79 in. $=$ \qquad ft
28. $\frac{1}{2} \mathrm{mi}=$ \qquad ft
\qquad

You can measure the amount of liquid a container can hold by using units such as the cup and the quart.

Have you heard of the liquid unit called fluid ounce (fl oz)? Many of the bottled liquids that you can buy are measured in fluid ounces. There are 8 fluid ounces in a cup, 16 fluid ounces in a pint, 32 fluid ounces in a quart, and 128 fluid ounces in a gallon.

Units of Capacity

8 fluid ounces (floz) $=1$ cup (c)
2 cups $=1$ pint (pt)
16 fluid ounces $=1$ pint
2 pints $=1$ quart (qt)
4 quarts $=1$ gallon (gal)

Write the equivalent measure.

1. $2 \mathrm{c}=\mathrm{pt}$
2. $1 \mathrm{c}=$ \qquad fl oz
3. $\frac{1}{2} \mathrm{gal}=$ \qquad qt
4. $3 \mathrm{qt}=$ \qquad pt
5. $16 \mathrm{fl} \mathrm{oz}=$ \qquad c
6. $\frac{1}{4} \mathrm{pt}=$ \qquad fl oz
7. $7 \mathrm{gal}=$ \qquad qt
$32 \mathrm{fl} \mathrm{oz}=$ \qquad c

1 qt $=$ \qquad pt
$1 \mathrm{pt}=$ \qquad fl oz
$\frac{1}{4} \mathrm{gal}=$ \qquad
$1 \mathrm{qt}=$ \qquad gal
$16 \mathrm{floz}=$ \qquad gal

3 gal = \qquad qt
$\frac{1}{2} \mathrm{gal}=$ \qquad pt

1 pt = \qquad qt
$16 \mathrm{fl} \mathrm{oz}=$ \qquad qt
$\frac{1}{4} p t=$ \qquad c

8 qt $=$ \qquad gal
$1 \mathrm{gal}=$ \qquad fl oz

20 pt $=$ \qquad qt

Compare. Write $<$, $>$, or $=$.
8. 12 fl oz
$\bigcirc 1 c$
9. 1 gal

8 pt
10. 12 pt

3 gal
11. $\frac{1}{2} q t$
 18 fl oz
12. $\frac{1}{8} \mathrm{gal} \bigcirc 2 \mathrm{pt}$
13. 0.25 gal

14. 100 qt
 25 gal

64 fl oz

$5 \mathrm{qt} \bigcirc 2 \mathrm{gal}$

3 qt
 7 pt

0.75 gal
 100 fl oz
 10 c

3 gal

22 pt $6 \mathrm{c} \bigcirc 44 \mathrm{fl} \mathrm{oz}$ $\frac{1}{4} q t \bigcirc 1 c$
$\frac{1}{2} \mathrm{pt} \bigcirc 1 \mathrm{c}$
0.5
 16 fl oz

24 qt
 4 gal 160 fl oz
 10 pt

The basic unit of weight in the Customary System is the pound.

- Four sticks of margarine weigh 1 pound.
- A car weighs about $1 \frac{1}{2}$ tons.

Units of Weight

16 ounces (oz) = 1 pound (lb)
2,000 pounds $=1$ ton

Complete.

15. 9 tons $=$ \qquad lb
$3 \mathrm{lb}=$ \qquad oz
96 oz = \qquad lb
16. $\frac{1}{2} \mathrm{lb}=$ \qquad oz
$3 \frac{3}{4} \mathrm{lb}=$ \qquad oz
0.5 ton = \qquad lb
17. 0.5 ton $=$ \qquad oz
$160 \mathrm{oz}=$ \qquad lb \qquad tons
18. $4 \mathrm{oz}=$ \qquad lb
$0.75 \mathrm{lb}=$ \qquad oz $\frac{3}{4}$ ton $=$ \qquad lb

Compare. $<,>$, or $=$.
19. 32 oz
 0.5 lb
96 oz
 20 lb
0.5 ton
 $10,000 \mathrm{lb}$
20. 80 oz
 6 lb
21. 320

22. 82 oz
 5 lb
3 lb
 50 oz
$1,750 \mathrm{lb}$

61 oz
 4 lb

Problem Solving

 Reasoning
Solve.

23. How many pounds of nails will be needed to fill one hundred boxes with 8 oz of nails in each? \qquad
24. Mrs. Ross's car used an average of 8 gal 3 qt of gasoline per week. How many gallons did the car use in 4 weeks?
25. How many pint bottles can be filled from 16 gal 3 qt of water? \qquad
26. A class is mailing $\mathbf{1 0}$ gift packages weighing 2 lb 10 oz each. What is the total weight of the packages?

Test Prep * Mixed Review

27 What do you need to do to each side of this equation to solve it?
$x+4 \frac{7}{8}=9 \frac{3}{5}$
A $\operatorname{Add} x$
C Subtract x
B $\operatorname{Add} 4 \frac{7}{8}$
D Subtract $4 \frac{7}{8}$

28 This table shows how far John jogged after school during one week.

Day	Mon	Tues	Wed	Thurs	Fri
Distance	$2 \frac{1}{2} \mathrm{mi}$	$2 \frac{2}{3} \mathrm{mi}$	$1 \frac{5}{8} \mathrm{mi}$	$1 \frac{7}{8} \mathrm{mi}$	$2 \frac{5}{8} \mathrm{mi}$

Which list shows the days he ran in order from greatest to least distance?

F Monday, Tuesday, Wednesday, Thursday, Friday
G Tuesday, Friday, Monday, Thursday, Wednesday H Wednesday, Thursday, Monday, Friday, Tuesday J Monday, Wednesday, Friday, Thursday, Tuesday

The line graph shows the average monthly high temperature in the city where Melanie lives. Study the graph and use it to answer the questions below.

Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec. Month

1. Look at the scale on the vertical axis. How many degrees does each interval represent?
2. What is the range of temperatures shown in the graph? \qquad
3. True or false? The average high temperature was higher in January than in August.
4. What was the average high temperature in July? \qquad
5. What was the average high temperature in January? \qquad
6. Between which two consecutive months did the monthly high temperature change the most? \qquad
7. Between which two consecutive months did the monthly high temperature change the least? \qquad
8. How would the graph between August and December change if the number of degrees that each interval on the \boldsymbol{y}-axis represents was divided by 2? Explain.

For a project on weather, Julian recorded the greatest temperature each day for one week. The chart shows the data he collected. Use the data to complete the line graph. Remember to title the graph. Be sure to choose a scale that will allow you to show all the temperatures accurately.

Monday	78°
Tuesday	83°
Wednesday	85°
Thursday	80°
Friday	74°
Saturday	71°
Sunday	75°

Problem Solving Reasoning

Solve. Use the data shown above.
9. What was the average temperature recorded?
11. How would the graph change if you increased the number of degrees represented by each interval along the y-axis? \qquad
\qquad

Quich Ohect:

Solve.

Write the equivalent weight or capacity.
13. $\mathbf{3 6 ~ o z ~ = ~}$ \qquad lb 14. 75 pt $=$ \qquad gal 15. $50 \mathrm{fl} \mathrm{oz}=$ \qquad
16. Suppose you are plotting the following temperatures on a line

Work Space. c graph: $5^{\circ} \mathrm{F}, \mathbf{2 5 ^ { \circ }} \mathrm{F}, 17^{\circ} \mathrm{F}, 45^{\circ} \mathrm{F}, 32^{\circ} \mathrm{F}$. If the graph will be drawn on a 10-by-10 grid, what interval will you use on the y-axis?
10. What was the range of temperatures?
\qquad
12. Describe how the temperatures changed during the week, according to the graph you made. \qquad

In this lesson you will solve problems about metric and customary measurements. You will need to decide whether to add, subtract, multiply, or divide. To solve some of the problems you may need to use more than one operation.

Tips to Remember:

$\begin{array}{llll}\text { 1. Understand } & \text { 2. Decide } & \text { 3. Solve } & \text { 4. Look back }\end{array}$

- Try to remember a real-life situation like the one described in the problem. What do you remember that might help you find a solution?
- Find the action in the problem. Is there more than one action? Which operation shows the action best: addition, subtraction, multiplication, or division?
- Predict the answer. Then solve the problem. Compare your answer with your prediction.

Solve.

1. Walter is 1.29 meters tall. His sister is 8 centimeters taller. How tall is Walter's sister?

Copyright © Houghton Mifflin Company. All rights reserved.
Think: How many centimeters is $\mathbf{1 . 2 9}$ meters?
\qquad

Answer

3. Rachel wants to buy a train of letters that spells the name of her sister Gloria. The engine and caboose cost $\$ 4.95$ each. Each letter costs $\$ 2.95$. How much will the train cost?
4. A holiday roll of wrapping paper costs $\$ 8.50$. A roll of plain wrapping paper costs $\frac{2}{5}$ less. How much does the plain wrapping paper cost?
5. Mary Lou is $\mathbf{6}$ feet $\mathbf{2}$ inches tall. Her brother is 10 inches shorter. How tall is Mary Lou's brother?

Think: How many inches are in a foot?

Abstract

Answer 4. Matthew has a $\mathbf{6 0}$-foot length of cord that he plans to cut into $\mathbf{2 4}$ pieces of equal size. How long will each piece be?

6. A jumbo roll of ribbon is $\frac{2}{3}$ longer than the regular roll. The jumbo roll of ribbon is 55 ft . How long is the regular roll?

Solve.
7. When Peter was sick, he had a temperature of 38.5° Celsius. A normal temperature is 37° Celsius. How many degrees above normal was his temperature?
9. In a two-day snowstorm, the total snowfall was 1 foot 4 inches. If 10 inches fell the first day, how much fell the second day?
11. For an experiment, the science class weighed 6 identical metal bars. The total weight was 46.8 kilograms. How much did each bar weigh?

Extend Your Thinking

13. Use the information from problem 12 and the pictures below to estimate the area of the state of Mississippi.

14. One train averages 48 mph . Another train averages 56 mph . How many more miles will the faster train cover in 8 hours?
15. When Diego was born, he weighed 7 pounds 15 ounces. While he was in the hospital, he lost 2 ounces and then gained 4 ounces. What was his weight after the loss and gain?
16. When a truck driver left on a trip, the odometer read $1,356.7$ miles. When the driver returned, it read $\mathbf{1 , 5 2 9 . 1}$ miles. How many miles were traveled?
17. The state of New Mexico has an area of 121,598 square miles. There is an average of $\mathbf{1 3 . 8 6}$ people per square mile. What is the population of New Mexico to the nearest whole number?
\qquad
18. Explain the method you used to make your estimate in problem 13. Then look up the actual area of Mississippi and compare your estimate with the actual area.
\qquad
\qquad
\qquad
\qquad
19. A town received 6 ft 8 in . of rain last year. This year it received 10 in . less rain. How much rain did it receive this year?
\qquad

Measure segment $C D$ to each unit of measure.

1. nearest half-inch \qquad
2. nearest centimeter \qquad

Complete.

3. $1,000 \mathrm{~mm}=$ \qquad cm
4. $2.4 \mathrm{~km}=$ \qquad cm
5. $12 \mathrm{ft}=$ \qquad

Compare. Write $<$, $>$, or $=$.
6. 1 min 10 s7. 45 min
$\int \frac{3}{4} h$
8. 4 h $30 \mathrm{~min} \bigcirc 200 \mathrm{~min}$

Circle the greater measure.
9. 5 c or 2 pt
10. 13 oz or 1 lb
11. 2.7 kg or 350 g

Circle the temperature that is most likely.
12. Water freezes. $100^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$
13. Water boils. $100^{\circ} \mathrm{F}$ or $212{ }^{\circ} \mathrm{F}$

Solve.
14. 3 ft 4 in . $+4 \mathrm{ft} 9 \mathrm{in}$.
15. 1 wk 5 days 12 h
$\times 4$
16. 3 lb 10 oz
$-15 \mathrm{oz}$

Solve.
17. On another piece of paper, make a line graph of the data in the table.
18. Did Terry stop between 9:15 A.м. and 10:15 A.м.? Explain.
\qquad
\qquad
\qquad

Distance Terry Traveled	
Time	Miles
9:15 А.м.	1
9:30 А.м.	2
9:45 А.м.	3
10:00 А.м.	3
10:15 А.м.	3.5

19. If Ian can travel 4 miles in $\frac{3}{4}$ hour, how far can he travel in 6 hours?
(1) Binhan made multi-grain bread. He used $1 \frac{1}{2}$ cups of wheat flour, $1 \frac{3}{4}$ cups of rye flour, and $\frac{2}{3}$ cup of cornmeal. How much flour and cornmeal did he use in all?
A $3 \frac{6}{9}$ c
C $4 \frac{11}{12} \mathrm{c}$
E NH
B $3 \frac{11}{12} \mathrm{c}$
D 5 c

2 Louisa is making a banner. She tapes 15 sheets of paper together. Each sheet is $\mathbf{8} \frac{\mathbf{1}}{\mathbf{2}}$ inches long. How long is the banner?
F $12 \frac{1}{2}$
H $127 \frac{1}{2}$ in.
K NH
G 120 in .
J $128 \frac{1}{2} \mathrm{in}$.

3 Maria collects buttons. She has 2,156 buttons. She knows that $\frac{2}{7}$ of her buttons are green. How many buttons are green?
A 38
C 308
E NH
B 76
D 616
(4) What is the value of $5 x^{3}$ when $x=4$?
F 60
H 120
K 320
G 80
J 240

5 Tommy practiced guitar for $\frac{\mathbf{1}}{\mathbf{2}}$ hour, piano for 45 minutes, and flute for $\mathbf{4 5}$ minutes. How long did he practice in all?
A 1 h
C $1 \frac{1}{2} h$
E N H
B 1 h 15 min
D 1 h 45 min

6 Linda bought 3 quarts of milk. How many cups is that?
F 12
H 3
G 6
J 1.5

Use the graph for exercises 7-8.
High Temperatures (in degrees Fahrenheit)

7 Between which two days did the high temperature change the most?

A Sunday and Monday
B Monday and Tuesday
C Tuesday and Wednesday
D Wednesday and Thursday

8 About how much warmer was Saturday than the previous Sunday?
F $5^{\circ} \mathrm{F}$
H $15^{\circ} \mathrm{F}$
G $10^{\circ} \mathrm{F}$
J $20^{\circ} \mathrm{F}$
UNIT 6 - TABLE OF CONTENTS
Ratios, Proportion, and Percents
Lesson Page
1 Writing Ratios 153
2 Rates and Unit Rates 155
3 Equal Ratios 157
4 Algebra: Proportions 159
5 Scale Drawings 162
6 Problem Solving Application: Too Much or Not Enough Information 165
7 Percents 167
8 Fractions, Decimals, and Percents 169
9 Percent of a Number 171
10 Discounts and Simple Interest 173
11 Finding the Percent 175
12 Finding the Number When a Percent Is Known 177
13 Problem Solving Strategy: Draw a Graph 179
14 Estimating with Percents 181

- Unit 6 Review 183
- Cumulative Review \star Test Prep 184

Dear Family,

During the next few weeks, our math class will be learning about ratios, proportions, and percent. You can expect to see homework that provides practice with finding discounts. Here is a sample you may want to keep handy to give help if needed.

We will be using this vocabulary: rate a comparison of two quantities by division
ratio a comparison between two quantities in the same unit proportion a statement that two ratios are equal
scale drawing a picture drawn in such a way that a given length in the picture represents a given length in the actual object

Discounts

To find a discount, first change the percent to a decimal by moving the decimal point two places to the left and erasing the percent sign. Then multiply and subtract.

Example: A baseball glove that regularly costs $\$ 60$ is marked 20% off. What is the sale price of the glove?

1. Change 20% to a decimal. $20 \%=0.20$
2. Multiply $\$ 60$ by $\mathbf{0 . 2 0}$
\$60
$\begin{array}{r}\times 0.20 \\ \hline \$ 12.00\end{array}$
3. Subtract. $\$ 60.00$
$\begin{array}{r}\mathbf{- 1 2 . 0 0} \\ \hline \$ 48.00\end{array}$
The sale price of the glove is \$48.
During this unit, students will need to continue practicing working with percents, ratios, and proportions.

Sincerely,

A ratio is a comparison of two numbers. The two numbers being compared are called the terms of the ratio.

- The ratio of the height of the smaller tree to the height of the larger tree is $\frac{\mathbf{5}}{\mathbf{1 0}}$. This ratio is read "five to ten."
The smaller tree is $\frac{1}{2}$ as tall as the larger tree because $\frac{5}{10}=\frac{1}{2}$.
- The ratio of the height of the larger tree to that of the smaller tree is $\frac{\mathbf{1 0}}{\mathbf{5}}$. This ratio is read "ten to five."

The larger tree is $\mathbf{2}$ times as tall as the smaller tree because $\frac{10}{5}=2$.

There are three ways to write a ratio: 10 to $5 \quad \frac{10}{5} \quad 10: 5$

The order in which you compare two numbers of a ratio is important.
$\bigcirc \square \square \bigcirc \bigcirc$
The ratio of squares to circles is $\frac{2}{3}$.
But, the ratio of circles to squares is $\frac{3}{2}$.

Write the ratio three ways.

1. 1 m to 4 m \qquad
2. $\mathbf{3} \min$ to 25 min \qquad
3. 8 cats to 5 dogs \qquad
4. 9 kg to 3 kg \qquad

Write the ratio as a fraction.
5. 5 lions to 6 leopards \qquad
6. 12 violins to 5 cornets \qquad
7. Jane's $40 ¢$ to Betty's $27 \$$ \qquad
8. 9 books to 3 magazines \qquad

20 rosebuds to 13 thorns
4 taxis to 9 buses \qquad
10 buses to 3 taxis \qquad
9 cars to 36 trucks \qquad

The four ratios $\frac{18}{24}, \frac{6}{8}, \frac{9}{12}$, and $\frac{3}{4}$ represent the same relationship. The ratio $\frac{3}{4}$ is in simplest form. You can simplify ratios just as you simplify fractions.

You can use a ratio to compare two measurements.
45 s to 1 min
To simplify a ratio of measurements, you must first express both measurements in the same unit. Since $\mathbf{1} \mathbf{~ m i n}=\mathbf{6 0} \mathrm{s}$, write the ratio as 45 s to 60 s . Then simplify.

$$
\frac{45}{60}=\frac{3}{4}
$$

Simplify the ratio.
9. $\mathbf{1 8}$ to $81 \rightarrow$
10. $\mathbf{2 5}$ to $\mathbf{1 5 0} \rightarrow$ \qquad
11. 24 to $84 \rightarrow$ \qquad
56 to $32 \rightarrow$ \qquad

Simplify the ratio.
12. 9 months to 2 years \qquad 50 s to 2 s \qquad
15 s to 2 min \qquad
13. 20 days to 4 weeks \qquad 1 quarter to 1 dollar \qquad 8 wk to 1 yr \qquad

Problem Solving

 Reasoning14. A stamp collection has 40 U.S. stamps and 15 foreign stamps. What is the ratio of U.S. stamps to the total number of stamps?
15. Suppose cherry is your favorite flavor. Would you rather buy a bag of candy in which the ratio of cherry to lemon flavor is 2 to $\mathbf{3}$ or $\mathbf{3}$ to 2 ?

Test Prep \star Mixed Review

16. What is the value $n^{3}+27$ for $n=4$?
A 31
C 43
B 39
D 91

17 The 28 students in Ms. Hill's class are planning a party. The food and decorations will cost $\$ 140$. Which equation could be used to find each student's share of the cost, m ?
F $28+m=140$
H $m \div 28=140$
G $m-28=140$
J $28 m=140$

A rate is a special type of ratio that compares quantities that are in different units, such as yards and seconds. For example, a runner runs at a rate of $\mathbf{8 0}$ yards in $\mathbf{1 0}$ seconds.

You can write a rate in the following ways:

$$
\frac{80 \text { yards }}{10 \text { seconds }}
$$

80 yards: 10 seconds
80 yards per 10 seconds
Rates are usually written as a quantity 1 , called a unit rate.
To find a unit rate, find an equal ratio with a denominator of 1.

$$
\frac{80 \text { yards }}{10 \text { seconds }}=\frac{8 \text { yards }}{1 \text { second }}
$$

A runner runs at a unit rate of $\mathbf{8}$ yards per second, or $\mathbf{8 y d} / \mathrm{s}$.
Other examples of rates are:
\$8.25/h
70 heartbeats/min
98\$/L
88 km/h

Write a rate that describes the situation.

1. a dozen eggs for $\$ 1.19$ \qquad
2. 5 tickets for $\$ 25$ \qquad
3. 120 miles per $\mathbf{6}$ gallons \qquad
4. $\mathbf{1 0}$ for $50 \$$ \qquad
5. 45 yards in $\mathbf{3}$ passes \qquad

Find the unit rate.
6. 200 m in 20 s \qquad
7. $\$ 1.00$ per 4 g \qquad
8. $\$ 32$ for 4 \qquad
9. $\mathbf{2 5 0}$ miles per $\mathbf{1 0}$ gallons \qquad
10. $\$ 1.56$ a dozen \qquad
11. 12 lessons for $\$ 144$ \qquad
12. $\$ 25.30$ for $\mathbf{2 3}$ gallons \qquad
13. $\mathbf{2 5}$ feet in $\mathbf{5}$ seconds \qquad
14. 96 pounds in 12 bags
\$30 for 5 shirts \qquad
5 for a quarter \qquad
60 words per min \qquad
2 apples for \$1.00 \qquad
90 miles in $\mathbf{2}$ hours \qquad
360 bars in 3 boxes \qquad

16 km per 2 hr \qquad
48 baseball bats in 6 boxes \qquad
\$10 for 2 \qquad
600 people per 15 square miles \qquad
24 pictures for \$12.00 \qquad
90 sheets for 15 students \qquad
675 trees for 5 acres \qquad
1,680 pages in 7 books \qquad

Thê ünit priće is thê coost peer unit. In free examplè bèlow, the unit price is the cost per ounce of ketchup. To find the unit price, divide the price by the number of ounces.

12-oz bottle of ketchup for $\$ 1.29$:
$\underset{\text { quantity } \rightarrow \frac{\$ 1.29}{12 \mathrm{oz}}=}{\substack{\text { price } \\ \text { unit price }}}$

16-oz bottle of ketchup for $\$ 1.85$:
$\frac{\$ 1.85}{16 \mathrm{oz}}=\underset{\text { unit price }}{\$.1175}$ or $11.75 ¢$ per oz

The ketchup in the 12-oz bottle is the better buy.

For each item, find the unit price in cents per ounce to two decimal places. Circle the item that is the better buy.
15.

\qquad

Problem Solving Reasoning
18. Instant photo film costs $\mathbf{\$ 1 2 . 5 0}$ for 10 pictures. What is the unit price?
19. At one store, the price of film is 3 rolls for $\$ 15.39$. At another, the same film is 5 rolls for $\mathbf{\$ 2 4 . 9 9}$. Which is the better buy?

Lest Prep \times Mired Review

(21) What do you need to do to each side of this equation to solve it?

$$
\frac{4}{9} \times q=\frac{3}{5}
$$

A Multiply by $\frac{4}{9}$
B Multiply by $\frac{9}{4}$
C Multiply by $\frac{3}{5}$
D Divide by $\frac{5}{3}$

21 Oliver measured crickets for a science experiment. The table shows the length of the crickets.

Cricket A	Cricket B	Cricket C	Cricket D
2.68 cm	2.64 cm	3.68 cm	2.86 cm

Which list shows the crickets in order from shortest to longest?
F Cricket A, Cricket B, Cricket C, Cricket D
G Cricket C, Cricket D, Cricket A, Cricket B
H Cricket B, Cricket A, Cricket D, Cricket C
J Cricket B, Cricket D, Cricket A, Cricket C

Carl reads 2 books every 3 weeks. At that rate, how many books will he read in 12 weeks?
You need to find a ratio equal to $\frac{2}{3}$ with 12 as the second term. Because $3 \times 4=12$, multiply 2×4 to get the first term of the ratio.

$$
\begin{aligned}
\text { books } \rightarrow & \frac{2}{3}=\frac{n}{12} \leftarrow \text { books } \\
\text { weeks } \rightarrow & \leftarrow \text { weeks } \\
& \frac{2}{3}=\frac{2 \times 4}{3 \times 4}=\frac{8}{12} \\
& \text { So } n=8
\end{aligned}
$$

Carl will read 8 books in 12 weeks.
When one term of a ratio is multiplied by a given number, multiply the other term by the same number to get an equal ratio.

Find the missing term.

1. $\frac{2}{3}=\frac{n}{6}$
$\frac{5}{6}=\frac{x}{36}$
$\frac{3}{8}=\frac{y}{24}$
$\frac{5}{7}=\frac{a}{42}$
$\frac{8}{9}=\frac{b}{63}$
n $=$ \qquad
$x=$ \qquad
$y=$ \qquad
$a=$ \qquad
b $=$ \qquad

Use equal ratios to find the value of \boldsymbol{n}.
2. 9 pencils per 7 pupils $=\boldsymbol{n}$ pencils per 63 pupils \qquad
3. $\mathbf{5}$ points per $\mathbf{2}$ games $=\boldsymbol{n}$ points per $\mathbf{1 6}$ games \qquad
4. $\mathbf{1 0}$ tickets per child $=\boldsymbol{n}$ tickets per $\mathbf{5}$ children \qquad
5. $\mathbf{5 2}$ kilometers per hour $=\boldsymbol{n}$ kilometers per $\mathbf{3}$ hours \qquad
6. $\mathbf{2 0}$ people in $\mathbf{4}$ cars $=\boldsymbol{n}$ people in $\mathbf{8}$ cars \qquad
7. $\mathbf{4 0}$ hours in $\mathbf{4}$ weeks $=\mathbf{1 0}$ hours in \boldsymbol{n} weeks \qquad
8. 4 pounds for 16 people $=\boldsymbol{n}$ pounds for 48 people \qquad
9. 9 bars of soap for $\mathbf{3}$ dollars $=27$ bars of soap for \boldsymbol{n} dollars \qquad
10. 60 miles per hour $=n$ miles per 4 hours \qquad

Are the ratios equal? Write Yes or No.
11. $\frac{3}{1}, \frac{9}{3}$ \qquad
\qquad
12. $\frac{2}{5}, \frac{8}{25}$
\qquad
13. $\frac{24}{48}, \frac{1}{2}$
14. 4 to 5,16 to 25 \qquad 1:4,7:28 \qquad

2 to 5, 6 to 15 \qquad
15:25, $3: 5$ \qquad
12 : 32, 3 : 8 \qquad
$\frac{5}{9}, \frac{15}{18}$ \qquad

Find the missing term.
15. $\frac{4}{16}=\frac{k}{12} \quad k=\quad \frac{2}{10}=\frac{p}{15} \quad p=\quad \frac{6}{8}=\frac{9}{x} \quad x=\quad \frac{12}{27}=\frac{n}{18} \quad n=$ \qquad

Problem Solving

Solve.
Reasoning
16. Two quarts of lemonade serve 5 people. At that rate, how much lemonade would serve 30 people? \qquad
17. Bill can type 9 words in 30 seconds. At that rate, how much time would be needed to type 45 words?
18. Three rolls of tape cost $80 \$$. At that rate, how much would 6 rolls cost?
19. In a 7-day week, Karen practices her violin 14 hours. At this rate, how many hours will she practice her violin in 28 days?
20. Jim traveled a distance of 90 miles in $\mathbf{2}$ hours. Bob traveled a distance of $\mathbf{1 5 0}$ miles in $\mathbf{3}$ hours. Who traveled at a faster average speed? \qquad

(V) Quick Check

Write the ratio in three ways.

Work Space.
21. 3 feet out of every 5 feet \qquad
22. 7 students out of every 10 \qquad
23. $\mathbf{7}$ cars for every $\mathbf{3}$ vans \qquad
24. 5 computers for every class \qquad
Find the missing term.
25. $\frac{3}{4}=\frac{n}{32}$
26. $\frac{21}{35}=\frac{3}{s}$
27. $\frac{56}{25}=\frac{n}{100}$

Write the unit rate.
28. 524 mi in 8 h
29. 6 muffins for $\$ 4.47$ 30. 740 mi on 25 gal

In Lesson 3 you learned how to find equal ratios. An equation showing the equality of two ratios, such as $\frac{3}{7}=\frac{9}{21}$, is called a proportion. Proportions have an important property that you can use to solve problems: The cross products in a proportion are equal.

$$
\text { If } \frac{a}{b}=\frac{c}{d} \text { then } a \cdot d=b \cdot c \text {. }
$$

The example below shows why this is true.
Original proportion
Write each ratio as a product of a fraction and a whole number.

Use inverse operations. Multiply both sides by 7 - 21.

The multiplicative inverse property gives you the cross products.

Cross products: $\boldsymbol{a} \cdot \boldsymbol{d}=\boldsymbol{b} \cdot \boldsymbol{c}$

$$
\frac{3}{7}=\frac{9}{21}
$$

$$
3 \cdot \frac{1}{7}=9 \cdot \frac{1}{21}
$$

$$
3 \cdot \frac{1}{7} \cdot(7 \cdot 21)=9 \cdot \frac{1}{21} \cdot(7 \cdot 21)
$$

$$
3 \cdot\left(\frac{1}{7} \cdot J\right) \cdot 21=9 \cdot\left(\frac{1}{21} \cdot 21\right) \cdot 7
$$

$$
3 \cdot 1 \cdot 21=9 \cdot 1 \cdot 7
$$

$$
3 \cdot 21=9 \cdot 7
$$

$$
63=63
$$

You can use the cross-product property to find the missing term in a proportion.

At the rate of 60Φ a dozen, what is the cost of $\mathbf{8}$ apples?

To solve this equation, first establish the proportion.
$\frac{60}{12} \frac{n}{8}$
Then solve the related multipication equation.

$$
\begin{aligned}
60 \times 8 & =12 \times n \\
480 & =12 \times n \\
n & =40
\end{aligned}
$$

Therefore, 8 apples cost 404 .

Find the missing term.

1. $\frac{n}{9}=\frac{12}{4}$
$\frac{5}{6}=\frac{15}{n}$
$\frac{2}{6}=\frac{25}{n}$
$\frac{9}{n}=\frac{3}{7}$
2. $\frac{n}{7}=\frac{21}{49}$
$\frac{10}{12}=\frac{n}{72}$
$\frac{n}{25}=\frac{72}{9}$
$\frac{8}{n}=\frac{12}{60}$

Eamotimos fina miceing fofm in a BreBeitign may not pe a
そうこに ニ：

$$
\frac{\overline{\bar{x}}}{\overline{8}} \equiv \frac{3}{\overline{5}}
$$

$$
n \times 5=8 \times 3
$$

$$
n \times 5=24
$$

$$
n=4 \frac{4}{5}
$$

7．5
$7.5 \times 2=6 \times n$
$15=6 \times n$
$2.5=n$

$$
\begin{aligned}
\frac{n}{\overline{3}} & \equiv \frac{8}{\overline{13}} \\
n \times 15 & =6 \times 8 \\
n \times 15 & =48 \\
n & =3 \frac{1}{5}
\end{aligned}
$$

Solve．
3．$\frac{n}{3}=\frac{5}{9}$
$\frac{7}{n}=\frac{4}{6}$
$\frac{4}{8}=\frac{2}{n}$
$\frac{10}{4}=\frac{n}{0.6}$

4．$\frac{n}{6}=\frac{15}{45}$
$\frac{2}{10}=\frac{n}{35}$
$\frac{15}{7}=\frac{n}{105}$
$\frac{12}{13}=\frac{n}{130}$

5．$\frac{6}{n}=\frac{4}{3}$
$\frac{9}{n}=\frac{7}{4}$
$\frac{8}{n}=\frac{5}{6}$
$\frac{21}{6}=\frac{3.5}{n}$

6．$\frac{n}{8}=\frac{6}{5}$
$\frac{3}{3}=\frac{n}{3}$
$\frac{n}{8}=\frac{3}{4}$
$\frac{n}{10}=\frac{40}{1.6}$

7．$\frac{5}{16}=\frac{n}{11}$
$\frac{17}{23}=\frac{n}{15}$
$\frac{8}{5}=\frac{6}{n}$
$\frac{4.9}{n}=\frac{28}{8}$

8．$\frac{13}{38}=\frac{24}{n}$
$\frac{9}{100}=\frac{n}{50}$
$\frac{n}{100}=\frac{5}{6}$
$\frac{8}{2.5}=\frac{n}{18}$

9．$\frac{15}{24}=\frac{19}{n}$
$\frac{n}{18}=\frac{21}{12}$
$\frac{16}{3.5}=\frac{n}{21}$
$\frac{3}{4}=\frac{1.5}{n}$
\qquad

Use cross products to tell whether the ratios form a proportion. Write Yes or No.
10. $\frac{18}{25}, \frac{7}{10}$ \qquad
$\frac{5}{8}, \frac{15}{24}$ \qquad $\frac{4}{2}, \frac{2}{1}$
$\frac{3}{5}, \frac{12}{2}$
11. $\frac{3}{8}, \frac{12}{32}$ \qquad $\frac{3}{4}, \frac{5}{6}$ \qquad $\frac{20}{30}, \frac{4}{6}$
$\frac{2}{9}, \frac{12}{6}$
\qquad
12. $\frac{4}{7}, \frac{7}{12}$
$\frac{3}{7}, \frac{9}{28}$
$\frac{5}{9}, \frac{15}{27}$
$\frac{3}{5}, \frac{5}{8}$

Problem Solving Solve. Reasoning

13. Fruit cocktail is on sale at 3 cans for a dollar. What is the cost of $\mathbf{1 2}$ cans?
14. If erasers are priced at 3 for $99 ¢$, what is the cost of 6 erasers? \qquad
15. A $\$ 1.95$ loaf of bread has 20 slices. What is the cost of bread for 30 regular sandwiches? \qquad
Solve. Check that your answer makes sense.
16. Baseballs cost $\$ 14.69$ for 3 balls. How much do 100 balls cost? \qquad
17. Some orange paint is made by mixing 4 mL red paint and 15 mL yellow paint. How much red should be mixed with 100 mL of yellow to get the same color orange?
18. Jamie buys 2 disks for $\$ 19$. What does he pay for 6 disks, excluding tax? \qquad
19. Gum costs $55 ¢$ for a pack of 5 sticks. How many sticks of gum can you buy for $\mathbf{\$ 2 . 2 0}$?
\qquad
20. At Discount Dora's you can buy 2 pairs of socks for $\mathbf{\$ 5 . 8 0}$. What is the cost of 12
pairs of socks? \qquad
21. Leila reads 40 pages per hour. How long does it take her to finish a 228-page
book? \qquad
22. A company can buy packages of 500 sheets of computer paper for $\$ 4.68$. At that rate, how much paper can be bought for $\$ 2,000$?

Test Brep $*$ Mired Review

23 In Hollowell Park, there are 35 tulip plants for every 21 iris plants. What is the ratio of tulip plants to iris plants in simplest form?
A $35: 21$
C 3:5
B 5:3
D 7:3

24 The largest box of Supra-White Detergent weighs 43.4 ounces. The smallest box weighs $\mathbf{2 5 . 2 5}$ ounces. How much more does the largest box weigh?

F 18.15 oz	H 25.25 oz
G 18.25 oz	J 43.4 oz

Three scale drawings are shown at the right.
This drawing of a leaf is actual size: 1 inch on the drawing represents 1 inch on the leaf. The scale is 1 inch to 1 inch.

In the drawing, the length of the leaf measures about $\mathbf{2} \mathrm{in}$. The real leaf is also about $\mathbf{2} \mathrm{in}$. long.

This drawing of a map is smaller than actual size: 1 inch on the drawing represents 10 miles on the land. The scale is $\mathbf{1}$ inch to $\mathbf{1 0}$ miles.

In the map, the distance from Springfield to Salem measures about 1.5 in . The real distance is about 15 mi .

This drawing of a butterfly is larger than actual size: 1 inch on the drawing represents $\frac{9}{16}$ inch on the butterfly. The scale is 1 inch to $\frac{9}{16}$ inch. The drawing measures about $\mathbf{2}$ in. across. The real butterfly is about $\frac{18}{16}$ or $1 \frac{1}{8}$ in. across.

Scale: 1 in. $=10 \mathrm{mi}$

Complete.

If $\mathbf{1} \mathbf{i n}$. on a map represents $\mathbf{2 0 0 ~ m i}$, then

1. \qquad represents 400 mi . \qquad represents 50 mi .
2. $1 \frac{1}{2}$ in. represents \qquad mi . \qquad represents $\mathbf{2 5 0} \mathbf{~ m i}$.

If 1 in . on a map represents 30 ft , then
3. \qquad represents 15 ft .
4. $1 \frac{1}{2} \mathrm{in}$. represents \qquad ft.

2 in. represents \qquad ft.
___ represents $7 \frac{1}{2} \mathrm{ft}$.

Complete the table.

5.	Scale Length	$\frac{1}{4} \mathrm{in}$.	1 in.	$\frac{1}{2} \mathrm{in}$.	2 in.		$1 \frac{1}{2} \mathrm{in}$.		$3 \frac{1}{4} \mathrm{in}$.	
	Actual Length	1 ft	4 ft			$\frac{1}{2} \mathrm{ft}$		11 ft		12 ft

\qquad

Measure the distance along the roads to the nearest

$\frac{1}{4}$ inch. Use a proportion to find the actual distance.

	Map Distance	Actual Distance
7. Fun Center to Store		
8. Water Hole to Motel		
9. Hotel to Post Office		
10. Post Office to Town Hall		
11. Motel to Store		
12. Hotel to Town Hall		
13. Water Hole to Town Hall		
14. Restaurant to Post Office		

Richard decided to make a scale drawing of his
neighborhood. The scale he used was 1 cm to 1 km . Label the place on the map and draw the connecting road.

Problem Solving

 ReasoningSolve.
21. A map is drawn using a scale in which 1 in. represents 15 miles. What distance will be represented by 12 in . on the map?

d Quick Chect

22. The distance between two towns is 460 km . What length on a map will represent this distance, if the map scale is $10 \mathrm{~km}=2 \mathrm{~cm}$? \qquad
23. His uncle lives 1.2 km west of the school.

S
15. His friend Jim's house is $\mathbf{1 k m}$ east of Richard's house.
16. The shopping center is 3.2 km north of Richard's house.
17. To get to school from home, he goes 1.2 km west and then 2.6 km south.
18. The baseball field is 3.2 km east of the \mathbf{W} school in the same road.
19. His grandmother lives 4.5 km east of the shopping center.

Some problems give more facts than you need to solve the problem. Some problems do not give enough facts. In this lesson, you will read a problem and decide whether there are missing or unnecessary facts.

Tips to Remember:

1. Understand
 2. Decide
 3. Solve
 4. Look back

- Read each problem more than once. Circle the important words and numbers. Cross out the words and numbers that you don't need.
- Think about each fact in the problem. Ask yourself: Is this an extra fact? Or do I need it to find a solution?
- Predict the answer. Then solve the problem. Compare your answer with your prediction.

Cross out the extra information. Then solve the problem. If information is missing, name the fact or facts needed on the answer lines.

1. The ratio of the cost of a small order of fries to the cost of a jumbo order of fries is $2: 5$. A jumbo order contains an average of 47 fries. What is the cost of a small order of fries?

Think: How many terms must you know in order to solve a proportion?
\qquad
\qquad
Answer \qquad
3. Allison's car uses 1 gallon of gasoline for every 32 miles she drives. She drives 35 miles to and from work each day. How far can Allison drive on $\mathbf{1 5}$ gallons of gas?
2. Alexander bought 3 cheeseburgers for a total of $\$ 6.75,3$ salads for a total of $\$ 6.90$, and 3 shakes for a total of $\$ 2.97$. How many cheeseburgers could he buy for $\$ 15.75$?

Think: What proportion could you use to solve this problem?

Answer

\qquad
4. There are 327 students attending the Middleton Middle School. The sixth level has 89 boys. How many girls are in the sixth level?

Cross out the extra information. Then solve the problem. If information is missing, name the fact or facts that you need.
5. Jorge wrapped 6 packages. The wrapping weighed almost as much as the packages. The wrapping weighed $1 \frac{1}{2}$ ounces. What was the ratio of the weight of the packages to the weight of the wrapping?
7. Suppose an order of beans has 160 milligrams of sodium. An order of chips has 169 more milligrams of sodium than the beans. A full meal has 315 milligrams of sodium more than the chips. How many milligrams of sodium do the chips have?
9. A restaurant can seat 205 people. Five tables seat one person, 40 tables seat two people, and 30 tables seat three or four people. How many tables are there in all?
\qquad

Extend Your Thinking

11. One half of the students at Jefferson Middle School bring their lunch to school. How many students bring their lunch?
\qquad
\qquad
12. Choose a problem in which a fact is missing. Make up data for the fact and then solve the problem.

New Data for Problem \qquad
\qquad
\qquad

The large square is divided into 100 small squares, and 25 of these have been shaded. We can say that $\frac{\mathbf{2 5}}{\mathbf{1 0 0}}$ or $\mathbf{0 . 2 5}$ of the large square is shaded. Another way to write the same number is $\mathbf{2 5 \%}$, read "twenty-five percent." The symbol \% represents the word percent, which means "per hundred." Each small square is $\frac{1}{100}$ of the large square; that is, it represents $\mathbf{0 . 0 1}$, or $\mathbf{1 \%}$, of the large square.

Use the squares to complete.

1. Shade 55% of the large square.
2. How many small squares did you shade? \qquad
3. What percent of the large square is not shaded? \qquad

4. Shade 29% of the large square.
5. How many small squares did you shade? \qquad
6. What percent of the large square is not shaded? \qquad

7. How many small squares of the large square are shaded? \qquad

8. What percent of the large square is not shaded? \qquad
9. How many small square are shaded? \qquad
10. What percent of the large square is shaded? \qquad
11. What percent is not shaded? \qquad

Sometimes you need to use percents that are greater than 100\%. For example, you might say that attendance at a game increased 150% from the last game. The shading of large squares at the right shows 150 hundredths or $\mathbf{1 5 0 \%}$.

Write the percent shown.

14. \qquad 15. \qquad

Decide whether the statement is possible. Write P for possible or N for not possible. If the statement is not possible, explain why.
16. Sale on shoes: 100% off.
17. Sales increased 175%.
18. The shirt is 130% cotton.

Problem Solving Reasoning
19. Thirty percent of Mrs. Smith's class pack their lunch. What percent of students in Mrs. Smith's class do not pack their lunch?

Solve. Mrs. Smith's class do not pack their lunch?

The extra police force decreased crime $\mathbf{3 0 0 \%}$.

The team won 105% of their games.

We guarantee your profit will be increased $\mathbf{2 0 0 \%}$.

Test Rrep * Mirece Review

21 An oil-change shop uses 9 quarts of oil for every 2 cars that are serviced. How many quarts of oil are needed to service 36 cars?
A 8
C 162
B 18
D 648

Jerry's. What percent of Jerry's allowance is Jane's allowance?
20. Jane's allowance is 2.5 times as much as
\qquad

Here are three ways to represent the shaded region.

Fraction		Decimal		Percent
$\frac{50}{100}$	$=$	0.50	$=$	50%
fifty hundredths		fifty hundredths		fifty percent

Write an equivalent decimal and percent.

1. $\frac{79}{100}=$ \qquad $=$ \qquad $\frac{5}{100}=$ \qquad \square $\frac{27}{100}=$ \qquad
2. $\frac{75}{100}=$ \qquad $=$ \qquad
$\frac{9}{100}=$ \qquad
\qquad $\frac{80}{100}=$ \qquad
\qquad
3. $\frac{4}{100}=$ \qquad $=$ \qquad $\frac{50}{100}=$ \qquad
\qquad $\frac{85}{100}=$ \qquad $=$ \qquad
4. $\frac{150}{100}=$ \qquad $=$ \qquad
$\frac{190}{100}=$
\qquad
\qquad $\frac{200}{100}=$ \qquad $=$ \qquad

Write an equivalent percent.
5. $0.37=$ \qquad $0.69=$ \qquad
$0.40=$ \qquad
$0.21=$ \qquad
6. $0.80=$ \qquad $0.55=$ \qquad $0.99=$ \qquad $0.44=$ \qquad
7. $0.75=$ \qquad
$0.77=$ \qquad
$0.25=$ \qquad $0.49=$ \qquad
8. $1.37=$ \qquad
$2.75=$
\qquad
$4.15=$ \qquad
$3.29=$ \qquad
9. To change a decimal to a percent, multiply it by \qquad and write a \% sign.

Write an equivalent decimal in hundredths.
10. $23 \%=$ \qquad
$67 \%=$ \qquad
79\% = \qquad
$1 \%=$ \qquad
11. $17 \%=$ \qquad
9\% = \qquad
$210 \%=$ \qquad
$10 \%=$ \qquad
$87 \%=$
\qquad
12. $145 \%=$ \qquad
325\% = \qquad
$417 \%=$ \qquad
13. To change a percent to a decimal, delete the $\%$ sign and divide the number by \qquad

Write an equivalent fractions in hundredths and in simplest form.
14. $75 \%=$ \qquad $=$ \qquad
$20 \%=$ \qquad $=$ \qquad $4 \%=$ \qquad $=$ \qquad
15. $70 \%=$ \qquad $=$ \qquad
$10 \%=$ \qquad $=$ \qquad
$48 \%=$ \qquad $=$ \qquad
16. $5 \%=$ \qquad $50 \%=$ \qquad $=$ \qquad $80 \%=$ \qquad $=$ \qquad

You can rewrite a fraction as a percent by dividing.

$$
\begin{aligned}
& \begin{array}{r}
\frac{1}{4} \rightarrow 1 \div 4 \rightarrow \begin{array}{r}
0.25 \\
4.00 \\
\frac{-8}{20} \\
\frac{-20}{0}
\end{array} \\
\hline
\end{array} \\
& \frac{1}{4}=0.25 \text { or } 25 \% \\
& \begin{array}{c}
\frac{1}{8} \rightarrow 1 \div 8 \rightarrow 8 \stackrel{0.12 \frac{1}{2}}{1.0} \\
\frac{-8}{2} 0 \\
\frac{-16}{4}
\end{array} \quad \begin{array}{l}
\text { Sometimes you } \\
\text { need to write the } \\
\text { remainder as a } \\
\text { fraction and use a } \\
\text { mixed number as } \\
\text { a percent. }
\end{array} \\
& \frac{1}{8}=0.12 \frac{1}{2} \text { or } 12 \frac{1}{2} \%
\end{aligned}
$$

Rename the fraction as a percent. Do your work on another piece of paper.
17. $\frac{1}{2}=$ \qquad
$\frac{3}{7}=$ \qquad
$\frac{1}{9}=$ \qquad
$\frac{2}{5}=$
\qquad
18. $\frac{9}{10}=$ \qquad
$\frac{11}{20}=$ \qquad
$\frac{1}{12}=$ \qquad
$\frac{7}{25}=$
\qquad
19. $\frac{3}{50}=$ \qquad
$\frac{3}{8}=$ \qquad
$\frac{5}{9}=$ \qquad

$$
\frac{1}{15}=
$$

\qquad
20. $\frac{1}{7}=$ \qquad
$\frac{5}{16}=$ \qquad
$\frac{3}{8}=$ \qquad
$\frac{2}{100}=$ \qquad

Complete the table.

21.	Fraction				$\frac{2}{3}$	$\frac{1}{6}$	$\frac{5}{8}$				$\frac{5}{6}$
22.	Decimal	0.50	0.75							0.25	
	23.	Percent			60%				$87 \frac{1}{2} \%$	80%	

Problem Solving Reasoning

Solve.
24. Four-fifths of all sixth graders at the Middle School participate in sports. What percent of sixth graders participate in sports?
25. Mr. Morelos saves 0.15 of his earnings. What percent of his earnings does Mr. Morelos save?

Test Prep * Mixed Review

26 The Lopez family drove for 5 hours at a rate of 65 miles per hour. How far did they drive?
A 325 mi
C 70 mi
B 305 mi
D 65 mi

27 Andrew measured the length of his teacher's desk and found it was 60 inches. How many feet is $\mathbf{6 0}$ inches?
F 720 ft
H 12 ft
G 60 ft
J 5 ft

In a survey of 130 students, 20\% had portable stereos.
How many students had portable stereos?
Another way of stating this problem is:
What is $\mathbf{2 0 \%}$ of $\mathbf{1 3 0}$?

Here are three ways to solve the problem:

Multiply by an equivalent fraction.

$$
20 \%=\frac{1}{5} \quad \frac{1}{5} \times 130=26
$$

Multiply by an equivalent decimal.

$$
\begin{array}{r}
\\
20 \%=0.2
\end{array} \begin{array}{r}
130 \\
\times 0.2 \\
\hline 26.0
\end{array}
$$

Solve a proportion.

$$
\begin{aligned}
& \frac{20}{100}=\frac{n}{130} \longleftarrow \quad \begin{array}{l}
\text { students with stereos } \\
100 n
\end{array} \\
&=20 \times 130 \\
& n=26
\end{aligned}
$$

So, 26 students had portable stereos.

Solve using the equivalent fraction method.

1. 20% of 50
$66 \frac{2}{3} \%$ of 75 \qquad 25% of 40 \qquad
2. $\mathbf{8 0 \%}$ of 50 \qquad $16 \frac{2}{3} \%$ of 36 \qquad 25\% of 78 \qquad

Solve using the equivalent decimal method.
3. 40% of 82 \qquad
12.5% of 184 \qquad 45\% of 30 \qquad
4. 11% of 60 \qquad
17% of 40 \qquad 5.25\% of 400 \qquad

Solve using a proportion.
5. $12 \frac{1}{2} \%$ of 56
$33 \frac{1}{3} \%$ of 114 \qquad 75\% of 72 \qquad
6. 35% of 164
$6 \frac{1}{2} \%$ of 32 \qquad 58\% of 20 \qquad
7. If $\mathbf{4 \%}$ of the students are absent from a class of $\mathbf{2 5}$ students, how many students are absent?
8. In a survey of $\mathbf{1 2 0}$ students, it was found that $\mathbf{8 5 \%}$ ride a bus to school. How many students ride a bus? \qquad
9. A 10 -speed bicycle is on sale for $\mathbf{8 0 \%}$ of the regular price. The regular price is $\$ 255$. What is the sale price?
10. The price of a certain lightweight touring bicycle is $\$ 395$ plus $\mathbf{5 \%}$ sales tax. What is the total cost?
11. A sporting goods store reduced all prices 10% for a sale. What is the sale price of a $\$ 37 \mathrm{rod}$ and reel?
12. A fisherman caught $\mathbf{2 5 \%}$ more fish in the month of August than he caught in the month of July. How many total fish did he catch in August if he caught 28 in July? \qquad

Quick Check

Write the fraction or decimal as a percent. Round to the nearest whole percent, if necessary.
13. $\frac{6}{25}$
14. 0.755
16. $3 \frac{3}{5}$ \qquad
Write the percent as a fraction or mixed number.
17. 905% \qquad 18. 4.04\% \qquad
Write the percent as a decimal.
19. 3.1\% \qquad 20. 40.25\% \qquad
Solve.
21. 15% of 88 \qquad 22. 8.6% of 250 \qquad

A discount is an amount of decrease from a regular price. A discounted price is often called a sale price.

Find the discount and the sale price for the television.

$$
\begin{aligned}
\text { Discount } & =\text { regular price } \times \text { discount rate } \\
& =\$ 250 \times 40 \% \\
& =\$ 250 \times 0.4 \\
& =\$ 100
\end{aligned}
$$

Sale Price $=$ regular price - discount

$$
\begin{aligned}
& =\$ 250-\$ 100 \\
& =\$ 150
\end{aligned}
$$

Complete the table.

	Regular Price	Discount Rate	Discount	Sale Price
1.	\$6	20\%	$\$ 6 \times 0.20=$	\$6- =
2.	\$25	30\%		
3.	\$20	35\%		
4.	\$80	10\%		
5.	\$4	40\%		
6.	\$65	15\%		
7.	\$198	50\%		
8.	\$1,250	25\%		
9.	\$120	45\%		
10.	\$90	55\%		
11.	\$160	$12 \frac{1}{2} \%$		
12.	\$144	$33 \frac{1}{3} \%$		
13.	\$220	60\%		
14.	\$80	15\%		

A person or bank who lends money usually collects interest on the loan. When you deposit money in a bank savings account, you earn interest.

- The amount of money borrowed or deposited is called the principal.
- The interest rate is the percent of the principal you pay or earn for a period of time.
- The time is number of years the principal is loaned for or saved.

To calculate simple interest on a loan of $\$ 600$ at $\mathbf{1 2 \%}$ for 2 years, use this formula.
Interest $(I)=$ principal $(p) \times$ rate $(r) \times$ time (t)

$$
\begin{aligned}
\text { Interest } & =\$ 600 \times 12 \% \times 2 \\
& =\$ 600 \times 0.12 \times 2 \\
& =\$ 144
\end{aligned}
$$

The simple interest on $\mathbf{\$ 6 0 0}$ at $\mathbf{1 2 \%}$ over a period of two years is $\mathbf{\$ 1 4 4}$.

Complete.

	Principal	Rate	Time	Interest
	$\$ 340$	12%	1 yr	$=\$ 340 \times 0.12 \times 1$
16.	$\$ 485$	11%	3 yr	
17.	$\$ 517$	14%	2 yr	
18.	$\$ 800$	8%	$\frac{3}{4} \mathrm{yr}$	

Problem Solving Reasoning
19. A radio with a regular price of $\$ 120$ is on sale at $\mathbf{2 5 \%}$ off. What is the sale price? Bonnie said, " $\mathbf{7 5 \%}$ of $\$ 120$ is $\$ 90$." Clyde said, " 25% of $\$ 120$ is $\$ 30$ and $\$ 120$ - \$30 $=\$ 90$." Why do both Bonnie and Clyde's methods work? \qquad

Test Prep $*$ Mixed Review

21 What do you need to do to both sides of this equation to solve it?

$$
a-1,986=789
$$

A Add a
C Subtract a
B Add 1,986
D Subtract 1,986
20. Bank A offers a savings plan at 8\% interest computed and added to the principal every $\frac{1}{4}$ year. Bank B offers 8\% simple interest per year. How much more would you earn on a $\$ 1,000$ deposit in one year at Bank A? \qquad

In a singing group there are $\mathbf{3 0}$ girls and $\mathbf{2 0}$ boys. The ratio 30:20 is a part-to-part ratio. The ratio of the number of girls to the number of students is a part-to-whole ratio and is written 30:50. What percent of the group are girls?

$$
\frac{30}{30+20}=\frac{30}{50}=\frac{60}{100}=60 \%
$$

The percent of the group that are girls is 60%. A percent is always a part-to-whole ratio.

What percent of the objects are red? First write the part-to-whole ratio, then the percent.

1.

2.

Express the situation as both a part-to-whole ratio and a percent.
Divide to write a fraction as a percent if the denominator
is not a factor of 100 .
3. $\mathbf{1 5}$ games won out of $\mathbf{2 0}$ games played \qquad
4. $\mathbf{2}$ successes out of $\mathbf{1 0}$ tries \qquad
5. 6 red marbles out of 36 marbles \qquad
6. $\mathbf{5}$ girls out of $\mathbf{1 5}$ children \qquad
7. 11 baskets made, 9 missed \qquad
8. 6 students out of $\mathbf{2 4}$ students \qquad
9. 5 rainy days out of 25 days \qquad
10. 10 sunny days out of 15 sunny days \qquad
11. 16 questions correct, 4 wrong \qquad
12. 1 purple shirt, $\mathbf{2}$ green shirts \qquad

Sometimes you need to find what percent a fraction or mixed number is of another.

What percent of $13 \frac{1}{3}$ is $1 \frac{2}{3} ?$

1. Write as a part-to-whole ratio. $\frac{13 \frac{2}{3}}{13 \frac{1}{3}} \leftarrow$ part
2. Divide. $1 \frac{2}{3} \div 13 \frac{1}{3} \rightarrow \frac{5}{3} \div \frac{40}{3}=\frac{1}{8}$ or 0.125
3. Rewrite the quotient as a percent. $0.125=12.5 \%$

Complete.

13. 27 is what percent of 9 ?
14. 44 is what percent of 99 ?
15. 2 is what percent of $3 \frac{1}{3}$?
16. 0.8 is what percent of 1.2 ?
17. 50 is what percent of 90 ?
18. $\frac{5}{6}$ is what percent of $3 \frac{1}{3}$?
19. 1.2 is what percent of 0.8 ?
20. 86 is what percent of 50 ?
21. $1 \frac{3}{8}$ is what percent of $2 \frac{1}{2}$?

Problem Solving Reasoning
22. On a test, Lorraine scored 9 out of 11 multiple-choice questions correct, 4 out of 6 True-or-False questions correct, and 5 out of 7 fill-in-the blank questions correct. What percent of all the questions did she score correct?

Quick Check

Find the amount of the discount or interest.
24. 25% off of a price of $\$ 15.29$
25. $\mathbf{3 0 \%}$ off a price of $\$ \mathbf{2 4 4}$
26. 8\% interest for 1 year on $\$ 550$
27. 4% interest for 6 months on $\$ 1,220$

Find the percent. Round to the nearest whole percent.
28. 16 out of 30
29. 39 out of 52
30. 19 out of 40
23. On Saturday Emma made a basket in 36 out of 80 attempts with a basketball. On Sunday, she made a basket in $\mathbf{1 1}$ out of $\mathbf{2 0}$ attempts. What percent of the baskets did she make on the weekend?

When a percent of the number is known, you can solve a proportion to find the number.

75\% of Arlene's CDs are swing music. She has 15 swing music CDs. How many CDs does she have altogether?

Another way of stating this problem is:
75% of what number is $\mathbf{1 5 ?}$

$$
\begin{aligned}
& \text { part } \rightarrow \frac{75}{100}=\frac{15}{n} \longleftarrow \text { part } \\
& \text { whole } \rightarrow \text { whole } \\
& 75 \times n=100 \times 15 \\
& n=20
\end{aligned}
$$

Arlene has 20 CDs altogether.
Solve by using a proportion.

1. 25% of what number is 8 ?
2. 5% of what number is 200 ?
3. $\mathbf{5 0 \%}$ of what number is $\mathbf{9 0}$?
4. $16 \frac{2}{3} \%$ of what number is 45 ?
5. 20% of what number is $16 ?$
6. 175% of what number is 49 ?
7. 15% of what number is 84 ?
8. $37 \frac{1}{2} \%$ of what number is 33 ?
9. $\mathbf{6 0 \%}$ of what number is $\mathbf{2 4}$?
10. 30% of what number is 42 ?
11. $\mathbf{4 0 \%}$ of what number is $\mathbf{2 0}$?
12. 75% of what number is 96 ?

Solve by using a proportion.
13. What is $\mathbf{2 5 \%}$ of $\mathbf{7 2}$?
16. 72% of what number is 45 ?
19. 25 is what percent of 10 ?
17. 4 is what percent of 32 ?
20. What is $87 \frac{1}{2} \%$ of 96 ?
14. 18% of what number is 9 ?

Problem Solving Reasoning
15. $\mathbf{1 2}$ is what percent of 20 ?
18. What is $\mathbf{4 0 \%}$ of $\mathbf{6 0}$?
22. Tajma bought a CD on sale for 75% of the regular price. She paid $\$ 8.88$. What was the regular price?
24. Arlene has $\mathbf{7 2}$ CDs. $\mathbf{2 5} \%$ of her CDs are jazz recordings. How many is that?
23. Eighteen of Maura's 45 CDs are country music. What percent are country music and what percent are not?
25. Bonnie had 42 CDs. She purchased $33 \frac{1}{3} \%$ more CDs. How many CDs does Bonnie have now?

Test Prep \star Mixed Review

26 Jenna made a poster for a class project. She painted $\frac{2}{5}$ of the poster green. What percent of the poster was green?

A 20%
B 25%
C 40%
D 60%

27 Sean had \$5.76 in coins. Some coins fell out of his pocket. Now he has $\mathbf{\$ 3 . 9 8}$. Which equation could be used to find how much money (m) he lost?

F $5.76-m=3.98$
G $m-3.98=5.76$
H $3.98 m=5.76$
J $5.76 m=3.98$

Sometimes you can draw a graph to solve a problem.

Problem

The Johnson family wanted to make a display of their household expenses so they could see how they were spending their money. What could their display look like?

Food	$\$ 12,000$
Housing	$\$ 15,000$
Recreation	$\$ 6,000$
Savings	$\$ 3,000$
Clothing	$\$ 9,000$
Miscellaneous	$\$ 3,000$

1 Understand As you reread, ask yourself questions.

- What does the problem ask you to do?

2 Decide Choose a method for solving.

Try the strategy Draw a Graph.

- The data show how their expenses were divided up, so use a circle graph.
- Each of the numbers in the chart is a multiple of $\$ \mathbf{3 , 0 0 0}$. If each section of the graph represents $\$ 3,000$, how many
sections would the graph have? \qquad
(3) Solve

Draw the graph.

- Use the table to complete the graph.

Check your graph.

- Can you visually compare the amounts?

Use the Draw a Graph strategy or any other strategy you have learned.

1. The town board made a graph to present the town's budget for a year. What could their graph look like?

Think: Why is a circle graph appropriate for this data?

Middlefield's Budget for a Year

Education	$\$ 1,000,000$
Highways	$\$ 750,000$
Health	$\$ 500,000$
Library Expenses	$\$ 500,000$
Miscellaneous	$\$ 250,000$

2. Bettina made a pictograph of the seating capacity of selected stadiums in the American Baseball League. She rounded the numbers to the nearest ten thousand. What did her graph look like?

Think: How many seats could one symbol represent?

Stadium	Seating Capacity
Anaheim Stadium	64,593
Yankee Stadium	57,545
Tiger Stadium	52,416
Fenway Park	33,871
Comiskey Park	44,431

4. Juanita made a circle graph of the Drama Club members for her school. She divided the circle into 8 sections. How many students did each section represent?

Grade	3	4	5	6
Members	5	10	10	15

Town of Middlefield Budget

3. George made a graph to show the lengths of selected suspension bridges in the United States. What could his graph look like?

Think: What type of graph is appropriate for this data?

Bridges	Length (in feet)
Golden Gate, CA	4,200
Mackinac, MI	3,800
Tacoma Narrows, WA	2,800
Verrazano-Narrows, NY	4,260
Benjamin Franklin, PA	1,750

5. Chion made a graph to show the average high temperature for his town over 5 days. What could his graph look like?
\qquad

One way to decide if a percent such as 40% is closer to $\frac{3}{8}$ or $\frac{1}{2}$ is to write the fractions as percents, then compare.

$$
\frac{3}{8}=37.5 \% \quad \frac{1}{2}=50 \%
$$

Since $\mathbf{4 0 \%}$ is closer to $\mathbf{3 7 . 5 \%}$ than to $\mathbf{5 0 \%}$, 40% is closer to $\frac{3}{8}$ than to $\frac{1}{2}$.

You can estimate to check your computations with percents.

1. Exact Answer $11 \% \times 480=$

$$
0.11 \times 480=52.8
$$

So, $\mathbf{1 1 \%}$ of $\mathbf{4 8 0}$ is $\mathbf{5 2 . 8}$.
2. Estimate 11% of $\mathbf{4 8 0}=$
11% is near 10% or $\frac{1}{10}$ 10% or $\frac{1}{10}$ of 480 is 48.
52.8 is a little more than the estimate of 48, so the exact answer is reasonable.

Circle the fraction that is closer to the percent.

1. 76%
$\frac{1}{2} \quad \frac{3}{4}$
89\%
$\frac{9}{10} \quad \frac{8}{10}$
67\%
$\frac{1}{2} \quad \frac{3}{4}$
2. 61%
$\frac{1}{2} \quad \frac{2}{3}$
33\%
$\frac{1}{3} \quad \frac{3}{10}$
40\%
$\frac{1}{3} \quad \frac{1}{2}$
3. 21%
$\begin{array}{ll}\frac{1}{4} & \frac{1}{5}\end{array}$
72\%
$\frac{3}{4} \quad \frac{2}{3}$
55\%
$\frac{2}{3} \quad \frac{1}{2}$
4. 27%
$\frac{1}{3} \quad \frac{1}{4}$
42\%
$\frac{2}{5} \quad \frac{3}{5}$
78\%
$\frac{3}{4} \quad \frac{4}{5}$

First compute the exact product. Then estimate
to check that your answer is reasonable.
5.

	Exact Product	Estimate
21% of 270		
61% of $\mathbf{6 0 0}$		
33% of 72		
89% of $\mathbf{2 0 0}$		
42% of $\mathbf{4 5}$		
76% of $\mathbf{3 2 0}$		
72% of $\mathbf{3 0 0}$		
27% of 96		

Tell whether the estimate is an overestimate or anderestimate.
13. 18% of $38 \approx 10$
12% of $135 \approx 10$
99\% of $799 \approx 799$
14. 16% of $129 \approx 30$
55% of $800 \approx 400$
25% of $415 \approx 100$

Problem Solving Reasoning

15. A sale of 75% off is advertised. About what would be the sale price of a computer with a regular price of $\$ \mathbf{1 , 2 9 9}$?
\qquad
16. Storage disks are on sale at store A for 80% off the regular price of $\$ 10.50$ and $\mathbf{7 5 \%}$ off the regular price of $\$ 7.99$ at store B.
Estimate and explain which is the better buy.
\qquad
\qquad
17. Sales tax is $\mathbf{8 \%}$. Estimate the amount of sales tax on a $\$ 25.55$ purchase.
18. Find the cost for each meal and estimate a tip of 15%.

The Restaurant	
Salad	$\$ 1.95$
Steak	$\$ 14.95$
Milk	$\$ 1.25$
Cherries Jubilee	$\$ 3.50$
Tip:	

The Restaurant	
Soup	$\$ 2.25$
Chicken	$\$ 10.95$
Milk	$\$ 1.25$
Bananas Supreme	$\$ 3.75$
Tip:	

Quict Cheak

Write the number.
19. 21 is 15% of what number? \qquad
20. $\mathbf{7 2}$ is 120% of what number? \qquad
21. 91 is 7% of what number? \qquad

Estimate.

22. 23% of 58 \qquad 23. 35% of 157 \qquad 24. 83% of 92 \qquad
\qquad

Write each ratio or rate three ways in simplest form.

1. 7 books to 3 shelves \qquad 2. 6 bats to 4 balls
\qquad

Find each missing term.
3. $\frac{3}{4}=\frac{n}{20}$ \qquad 4. $\frac{2}{5}=\frac{x}{15}$ \qquad 5. $\frac{7}{8}=\frac{y}{32}$ \qquad 6. $\frac{9}{5}=\frac{r}{35}$ \qquad 7. $\frac{7}{1}=\frac{a}{6}$
\qquad
8. 12 people in 3 lines $=\boldsymbol{n}$ people in 9 lines $\boldsymbol{n}=$ \qquad

Solve.

9. If 12 pencils cost $\$ 1.44$, what is the cost of 4 pencils? \qquad
10. If a car travels $\mathbf{5 0}$ miles in $\mathbf{1}$ hour, how far will it travel in $\mathbf{9 0}$ minutes? \qquad

Complete.

11. If $\mathbf{1}$ inch on a map represents $\mathbf{2 0 0}$ miles, then $\mathbf{1 . 5}$ inches represent \qquad miles.
12. If 2 feet on a model represent $\frac{1}{4}$ inch, then \qquad feet represent 1 inch.

Rename each fraction as a percent and each percent as a fraction in simplest form.
13. $\frac{5}{6}$ \qquad 14. $\frac{3}{8}$ \qquad 15. 80%
16. 65\% \qquad
Rename each decimal as a percent and each percent as a decimal.
17. 28% \qquad 18. 50\% \qquad 19. 0.39 \qquad 20. 0.625 \qquad

Solve.

21. 7 is what percent of $3 \frac{1}{2}$? \qquad 22. 16 is 20% of what number?
22. Use the information in the table to make a graph.

Class Election	
Candidate	Number of Votes
A	8
B	20
C	4

24. What percent of the students did not vote for Candidate B ? \qquad
(1)A clerk at the Downtown Deli is making a super-long sandwich for a party. Each of the 54 guests will get 3 inches of sandwich. How long should the sandwich be?
A 162 ft
C 13 ft 6 in .
E NH
B 136 in.
D 13 ft

2 Alison needs a piece of wood $3 \frac{3}{4}$ feet long for her art project. She has a board that is $\mathbf{5}$ feet long. How much does she need to cut off?
F $2 \frac{1}{4} \mathrm{ft}$
H 1 ft
K NH
G $1 \frac{1}{4} \mathrm{ft}$
J $\frac{3}{4} \mathrm{ft}$

3 Joel is making place cards for a dinner. He uses $\frac{1}{3}$ sheet of paper for each card. He has $5 \frac{2}{3}$ sheets of paper. How many cards can he make?
A $1 \frac{8}{9}$
C $15 \frac{2}{3}$
E NH
B 7
D 17

Eduardo bought a sweater that was on sale for $\mathbf{8 0 \%}$ of its regular price. He paid $\$ 24$ for the sweater. What was the regular price of the sweater?
F $\$ 19.20$
H $\$ 30$
K NH
G $\$ 24$
J \$32
(5) A length of $\mathbf{1}$ foot is 0.3048 m . What is this number rounded to the nearest 0.01 m ?
A 0.30
C 0.305
E NH
B 0.304
D 0.31

6

School Play Attendance	
Day	Number of People
Wednesday	345
Thursday	332
Friday	402
Saturday	402
Sunday	353

Which statement about the table is true?
F A different number of people came to the play each night.

G The most people came to the play on Sunday.
H More people came to the play on Wednesday than on Thursday.

J The same number of people came to the play on Thursday and Friday.

7 Use your inch ruler and this drawing to help you answer this question.

What is the actual distance from Bigtown to Smallville?
A 3 miles
C 105 miles
B 35 miles
D 140 miles
UNIT 7 - TABLE OF CONTENTS
Geometry of Plane Figures
Lesson Page
1 Plane Figures 187
2 Measuring Angles 189
3 Pairs of Angles 191
4 Circles and Central Angles 193
5 Congruence and Constructions 195
6 Triangles 197
7 Algebra: Quadrilaterals and Angle Sums 199
8 Problem Solving Strategy: Make a Table 201
9 Algebra: Similar Figures 203
10 Classifying Polygons 205
11 Problem Solving Application: Use a Diagram 207

- Unit 7 Review 209
- Cumulative Review \star Test Prep 211

Dear Family,

During the next few weeks, our math class will be learning about the geometry of plane figures. You can expect to see homework that provides practice with classifying polygons. Here is a sample you may want to keep handy to give help if needed.

Classifying Polygons

Polygons are simple closed plane figures formed by joining three or more segments. Examples of polygons include:

		 regular pentagon 5 sides
regular hexagon 6 sides	regular heptagon 7 sides	regular octagon 8 sides

These polygons are regular polygons because all of the sides of each polygon have the same length and all of the angles have the same measure.

Explore your home with your child and try to find examples of regular polygons as well as other polygons such as rectangles and parallelograms.

During this unit, students will need to continue practicing identifying figures as well as determining congruence and symmetry.

Sincerely,

A point is a location in space. Space is the set of all points. A plane is a set of points that forms a flat surface extending in all directions without limit.

Here are some figures that are contained in a plane:

Segment

The endpoints of this segment are \boldsymbol{A} and \boldsymbol{B}.

Ray
A ray has one endpoint and extends without end in one direction.

Line

The arrowheads show that a line extends without end in two directions.

Two rays that share a common endpoint form an angle. The common endpoint is the vertex of the angle. The two rays are the sides of the angle.

The symbol \angle represents an angle. In naming an angle, write the letter that names the vertex in the middle. The angle at the right is $\angle Q X R$ or $\angle R X Q$.

Sometimes you can name an angle using only the vertex.
The angle at the right can also be called $\angle X$.
Write the name for the figure in two ways.
1.

Write the name for the angle in three ways.
2.

Two lines in the same plane that never intersect are parallel (\|) lines.

$\overleftrightarrow{A B}$ is parallel to $\overleftrightarrow{C D}$ $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$

Two lines in the same plane that intersect to form square corners or right angles are perpendicular (\perp) lines.

$\overleftrightarrow{W X}$ is perpendicular to $\overleftrightarrow{Y Z}$ $\overleftrightarrow{W X} \perp \overleftrightarrow{Y Z}$

Draw the figures.

3. $\operatorname{Draw} \overleftrightarrow{A B} \perp \overleftrightarrow{B C}$
Draw $\overleftrightarrow{\boldsymbol{G H}} \| \overleftrightarrow{\boldsymbol{J}}$
Draw $\overleftrightarrow{\boldsymbol{S T}}$ and $\overleftrightarrow{\boldsymbol{W} \boldsymbol{X}}$ intersecting at point \boldsymbol{Y}.

-																																		
																						,												

4. How many right angles are formed at the intersection of two perpendicular lines? \qquad
5. How many different angles are a part of this figure?

Name the angles. \qquad
\qquad
\qquad
6. How many lines are in the figure? \qquad

7. Name ten rays in the figure.

Test Prep + Mixed Review

8 What should you do to both sides of this equation to solve it?

$$
t \div 456=654
$$

A Multiply by t
C Multiply by 456
B Divide by t
D Divide by 456
\qquad

You can measure an angle using an instrument called a protractor. To measure $\angle B A C$:

1 Place the center of the protractor at A, the vertex of the angle.
2 Place the zero mark on $\overrightarrow{A C}$, one side of the angle.

3 Read the measure of the angle where $\overrightarrow{A B}$, the other side of the angle, crosses the protractor. The measure of $\angle B A C$ is 64°. You

can classify angles by their measure.

Right angle \rightarrow measures exactly 90°
Acute angle \rightarrow measures less than 90°
Obtuse angle \rightarrow measures greater than 90°, but less than 180°

Use a protractor to measure the angle. Then write the measure and classify the angle.

Use a protractor to measure the angle. Then write the measure and classify the angle.
3.

\qquad

Solve.
5. The sum of the measures of the angles in any triangle is 180°. What is the greatest number of right angles a triangle could have? \qquad -
6. The sum of the measures of the four angles in a quadrilateral is 360°. What is the greatest number of obtuse angles a quadrilateral could have? \qquad

Test Prep \star Mixed Review

7 Arthur needs 3 packages of craft sticks to make 5 models. This proportion shows how many packages he needs to make 15 models.

$$
\frac{x}{15}=\frac{3}{5}
$$

What is the value of x ?
A 3
C 15
B 9
D 45

8 Sara used $\frac{4}{25}$ of a package of plaster for an art project. What percent of the package did she use?
F 16\%
H 84%
G 25%
J 100\%

If the measures of two angles are equal, the angles are said to be congruent.
Since $\angle A B C=\angle D E F, \angle A B C$ is congruent to $\angle D E F$, or $\angle A B C \cong \angle D E F$.

The angles on opposite sides of the intersection of two lines are called vertical angles. Vertical angles are always congruent.
Since $\angle P S R$ and $\angle Q S T$ are vertical angles, $\angle P S R \cong \angle Q S T$ and $\angle P S R=\angle Q S T$.
Since $\angle P S Q$ and $\angle R S T$ are vertical angles, $\angle P S Q \cong \angle R S T$ and $\angle P S Q=\angle R S T$.

Curves with tics show congruent angles.

If the sum of the measures of two angles is 180°, the angles are supplementary. $\angle M X L$ is supplementary to $\angle L X P$, because $\angle M X L+\angle L X P=180^{\circ}$.

If the sum of the measures of two angles is 90°, the angles are complementary. $\angle B Q K$ is complementary to $\angle K Q S$, because $\angle B Q K+\angle K Q S=90^{\circ}$.

Name and write the measures of each pair of vertical angles. Use a protractor.

1. \qquad

$\angle D E F=$ \qquad
$\angle F E G=$ \qquad
$\angle H E G=$ \qquad
$\angle H E D=$ \qquad
2. \qquad

$\angle L O M=$ \qquad
3. In exercise 1, what relationship is there between $\angle D E F$ and $\angle H E D$? $\angle H E G$ and $\angle D E H$?

Complete.

Measure of given angle	Measure of complement	Measure of supplement

4. 45°
5. 32°

Measure of
complement $\quad \begin{aligned} & \text { Measure of } \\ & \text { supplement }\end{aligned}$

\qquad
8. 18°
\qquad
Measure of given angle

Measure of complement

Measure of supplement
5. 65°
7. 20°
9. 89°
\qquad
\qquad

Use the intersecting lines to answer the questions.
10. Which two angles are supplements to $\angle S T P$?
11. The measure of $\angle S T P$ is 50°. What is the measure of $\angle S T R$? $\angle R T W$? \qquad $\angle P T W$? \qquad

Problem Solving

 Reasoning12. $\angle B O C=$ \qquad
$\angle D O C=$ \qquad
$\angle A O D=$ \qquad
$\angle A O B+\angle B O C=$ \qquad

Auict Ohect

Solve.
13. Three points A, B, and C are on one line. Point B is between the other two points. Name the longest segment in two ways. \qquad
14. $\overline{P A}, \overline{P Q}$, and $\overline{P B}$ are all in one plane. $\overline{P A} \perp \overline{P Q}$ and $\overline{P B} \perp \overline{P Q}$. How are $\overline{P A}$ and $\overline{P B}$ related? \qquad
Use the diagram at the right for exercises 15-18.
15. Name the two acute angles of the largest triangle. \qquad
16. Name an obtuse angle that has its

Work Space. vertex at D. \qquad
17. Name a complement of $\angle A B D$. \qquad
18. Name a supplement of $\angle A D B$. \qquad

You can use a compass to mark many points that are the same distance from a point. The set of all these points is called a circle.

A line segment connecting the center of a circle to any point on the circle is a radius (plural, radii). A line segment connecting any two points on a circle is a chord. A chord passing through the center of a circle is a diameter. The measure of a diameter is twice the measure of a radius.

Center: point 0
Radii: $\overline{O T}, \overline{O R}, \overline{O S}, \overline{O U}, \overline{O V}$
Chords: $\overline{T U}, \overline{T V}$
Diameter: $\overline{\mathbf{T U}}$

Measure the radius or diameter of circle O to the nearest $\frac{1}{8}$ inch.

1. $O T=$ \qquad $T U=$ \qquad
$O R=$ \qquad $O V=$

A circle is named by its center.
$\overline{T U}$ names the segment, $T U$ is the length of the segment.

A central angle is any angle whose vertex is the center of the circle.
$\angle S O R$ is a central angle of circle 0 . The common endpoint of $\overline{O R}$ and $\overline{O S}$ is the center of the circle, \boldsymbol{O}.

Complete for circle C.

12. Draw diameter $\overline{\boldsymbol{A B}}$.
13. Draw the following radii: $\overline{\mathbf{C D}}, \overline{\mathbf{C E}}, \overline{\mathbf{C F}}$, and $\overline{\mathbf{C G}}$.
14. Draw a chord $\overline{H I}$ that is not a diameter.
15. Draw central angle $\angle J C K$.
16. Draw another central angle $\angle L C M$.

17. How many radii does a circle have? \qquad
18. How many diameters? \qquad
19. Use your centimeter ruler.

Measure a radius of circle K. \qquad
Measure a diameter of circle K. \qquad
20. Write a general rule about how to find the measure of a

Test Prep \star Mixed Review

21) Mike's Market is having a sale on peaches. The peaches cost $\mathbf{\$ 0 . 8 9}$ for 2 pounds. How much do 8 pounds cost?

A $\$ 7.12$
B $\$ 6.12$
C $\$ 3.56$
D $\$.89$
22. What is the greatest common factor of 27 and 81?

F 1
G 3
H 9
J 27

A polygon is a simple closed plane figure that is formed by three or more line segments. Two polygons that have exactly the same size and shape are congruent.

Congruent polygons have corresponding congruent sides and corresponding congruent angles. Congruent sides are the same length. Congruent angles have the same measure. The names of congruent polygons are written so the corresponding vertices are in the same order.

Tic marks are used to show that two or more sides are congruent.

Here is how to draw a $\mathbf{5 0}^{\circ}$ angle:

1 Draw one side.

2 Place the protractor as you would for measuring and make a mark at $5 \mathbf{0}^{\circ}$.

3 Draw the other side.

Complete the list of congruent sides and angles for QRST and LMNO shown above. Then use a protractor to measure the angles and a ruler to measure the sides.

1. $\overline{Q R} \cong \overline{L M}$; Length of each:
$\overline{\boldsymbol{R S}} \cong$; Length of each:
$\overline{S T} \cong$ \qquad ; Length of each: \qquad
$\overline{Q T} \cong$ \qquad ; Length of each: \qquad

Draw angles having these measures.
3. 30°
4. 120°
2. $\angle T Q R \cong \angle O L M$; Measure of each: \qquad
$\angle Q R S \cong$; Measure of each: \qquad
$\angle R S T \cong$; Measure of each: \qquad
$\angle S T Q \cong$ \qquad ; Measure of each: \qquad
5. 45°

You can construct congruent line segments using a compass and straightedge.

Construct a line segment congruent to $\overline{A B}$.
1 Use the straightedge to draw $\overline{C E}$, longer than $\overline{A B}$.
2 Measure the distance from \boldsymbol{A} to \boldsymbol{B} with the compass.

$$
--
$$

3 Keep the same setting on the compass. Place
 the compass point on \mathbf{C}. Draw an arc on $\overline{C E}$. Label the point where the arc crosses the line $\boldsymbol{D} . \overline{\mathbf{A B}} \cong \overline{\mathbf{C D}}$

On a piece of paper, construct a segment congruent to the given segment.
6.

Problem Solving Reasoning
7. Name the pairs of congruent triangles in the diagram at the right.
8. Triangle $P Q R$ has 3 congruent sides and 3 congruent angles. How could you divide it into 2 congruent triangles?
\qquad
\qquad

Test Prep $*$ Mixed Review

(9) Neal bought some new shirts. He spent $\$ \mathbf{5 1 . 8 0}$. The shirts cost $\$ 12.95$ each. Which equation could you use to find how many shirts he bought?
A $12.95+n=51.80$
B $51.80 \div n=12.95$
C $51.80 n=12.95$
D $12.95 \div n=51.80$
(10) The Sweater Shack is having a sale. All sweaters cost 60% of their normal price. Mia bought a sweater on sale for $\$ 24$. What is the normal price of the sweater?
F $\$ 14.40$
G $\$ 24$
H $\$ 40$
J \$144

Figure $A B C$ at the right is a polygon. It is called a triangle, because it has 3 angles. Triangle ABC can be written as $\triangle A B C$. Each of the points A, B, and C is a vertex (plural vertices) of the triangle.
$\triangle A B C$ is made up of three sides and three vertices.
sides: $\overline{A B}, \overline{B C}, \overline{C A}$
vertices: A, B, C

$\triangle A B C$
You can construct a triangle using a compass and a straightedge.

Construct an equilateral triangle with sides equal to $\overline{\mathbf{P Q}}$.
1 Construct $\overline{\mathbf{G H}}$ congruent to $\overline{\mathbf{P Q}}$.

2 Keep the same setting on the compass. Put the point of the compass at \mathbf{G} and make a large arc.

3 Keep the same setting on the compass.
 Put the point of the compass at \boldsymbol{H} and make an arc that intersects the previous arc.

4 Connect the intersection of the arcs with the endpoints of $\overline{\mathbf{G H}}$.

On a piece of paper, construct an equilateral triangle with sides whose lengths are equal to the length given.
1.

2. Measure each angle of the triangles you drew in exercise 1.

What did you observe?
3. On a piece of paper, use the segments in exercise 1 for the two congruent sides and construct three isosceles triangles. Use any different length for the third side.

A triangle can be classified by its greatest angle measure.

Acute triangle: The greatest angle is an acute angle.
Right triangle: The greatest angle is a right angle. Obtuse triangle: The greatest angle is an obtuse angle.

A triangle can also be classified by the number of congruent sides it has.

Equilateral triangle: 3 congruent sides Isosceles triangle: at least 2 congruent sides Scalene triangle: no congruent sides

Measure each angle and write the measure.
Circle the greatest angle measure, then classify the triangle according to its angle measures.

\square

5. How many triangles in exercise 4 are
equilateral? \qquad isosceles? \qquad scalene? \qquad

Quick Oheck

Use the diagram below for excercises 6-9. Write whether the statement is True or False.

6. All central angles are acute. \qquad
7. $\overline{\boldsymbol{A B}}$ is a diameter of the circle. \qquad
Work Space.
8. $\overline{A C} \cong \overline{C D}$. \qquad
9. All diameters of the circle are congruent. \qquad
10. Draw an acute isoceles triangle.

Every polygon with 4 line segments joined to make 4 angles is called a quadrilateral. Quadri means "four." Lateral means "side." Here are some examples of quadrilaterals.

a polygon with 4 sides and 4 angles
a quadrilateral with $\mathbf{2}$ pairs of congruent parallel sides

a rectangle with
4 congruent sides
a parallelogram with 4 congruent sides
a parallelogram with 4 right angles

rectangle

a quadrilateral with 1 pair of parallel sides

Draw the quadrilateral. Use tics to show congruent sides and arrows to show parallel sides.

1. square $A B C D$
2. rectangle $E F G H$
3. parallelogram JKLM
4. rhombus PQRS
5. a rhombus that is not a square
6. a parallelogram with at least 1 right angle
7. a quadrilateral that is not a parallelogram
8. a quadrilateral with 1 pair of parallel sides
9. a rectangle that is not a rhombus
10. a quadrilateral that is not a parallelogram or a trapezoid

You can use these properties to solve problems
The sum of the measures of the three angles of any triangle is $\mathbf{1 8 0}^{\circ}$.

The sum of the measures of the four angles of any quadrilateral is 360°.

360°

Find the measure of the fourth angle of trapezoid MNOP.
$60^{\circ}+120^{\circ}+50^{\circ}+n=360^{\circ}$

$$
\begin{aligned}
230^{\circ}+n & =360^{\circ} \\
n & =360^{\circ}-230^{\circ} \text { or } 130^{\circ}
\end{aligned}
$$

Find the measure of the missing angle.
11.
$n=$ \qquad
12.
$n=$ \qquad
13.
$n=$ \qquad

Problem Solving

 ReasoningSolve.
14. On a piece of paper, draw three large parallelograms. Measure and label each of the angles. Look for a pattern. How are opposite angles in a parallelogram related?
15. One angle in a parallelogram is 36°. What are the measures of the other angles?
\qquad

Test Prep \star Mixed Review

16 Which four numbers are prime numbers?
A $5,7,11,13$
B $5,7,9,11$
C 5, 9, 13, 17
D $9,10,12,14$
17) A scientist had 24.863 milligrams of a chemical. What is this number rounded to the nearest hundredth?

F 24.86
G 24.87
H 24.9
J 25

In this lesson, you will learn to make a table to help you solve a problem.

Problem

The sum of the measures of angles of a triangle is 180°. Find a formula that you can use to find the sum of the angles of any polygon.
(1) Understand As you reread, ask yourself questions.
-What facts do you know?
The sum of the measures of the angles of a triangle is 180°.

- What do you need to find?
$(2$ Decide
Try the strategy Make a Table.
Name of polygon \rightarrow

Number of sides \rightarrow

Triangle
Number of triangles \rightarrow

Suadrilateral

Qum of measures of \rightarrow
angles

(3) Solve

Complete the table.
A diagonal is a segment that connects two vertices of a polygon but is not a side.

How many triangles are formed from the diagonals drawn from one vertex in a quadrilateral, pentagon, and hexagon? Fill in the missing information in the third row of the table.

- What is the relationship between the number of sides of the polygon and the number of triangles formed?
- By what number should you multiply the number of triangles in a polygon to find the total number of degrees
in the polygon? \qquad
Complete the bottom row of the table.

(4) Look back

State the formula that you can use to find the sum of the angles of any polygon. Use \boldsymbol{n} to represent the number of
sides of the polygon. \qquad

Solve. Use the Make a Table strategy or any other strategy you have learned.

1. In a regular polygon, all the angles have the same measure. Find a formula that you can use to find the number of degrees in each angle of a regular polygon.

Think: Does a regular polygon have the same number of sides as angles?

Answer
3. Find the total number of diagonals from all vertices in an octagon.
5. Each week Teisha saves $\$ 3$ more than the previous week. She starts out with $\$ 25$ in savings. How much will she have at the end of 4 weeks?
7. Triangle $A B C$ is a right triangle. Find a formula that tells the relationship between the measure of angle \boldsymbol{A} and angle \boldsymbol{B}.

9. The price of each ticket to the lecture is $\$ 5$. The price of 2 tickets is $\$ 10$ and so on. Make a table to show the price of up to 6 tickets. Then write a formula to show the relationship between the price \boldsymbol{p} and the number of tickets t.
2. Find a formula for the total number of diagonals that can be drawn from one vertex of a polygon.

Think: How many diagonals would a triangle have? A rectangle?

Answer
4. At the amusement park, 1 ticket costs $\$.75,5$ tickets cost \$3.75, and 10 tickets cost $\$ 7.50$. How much do 25 tickets cost?
6. There are 32 ounces in a quart. A punch bowl holds 4 quarts of punch. There are $1 \frac{3}{4}$ quarts of punch left in the bowl. How many ounces of punch were served?
8. Brian had $\$ 100$. He bought $\mathbf{4}$ gifts. He paid $\$ 50$ for the first gift. He paid half that for the second gift. The third gift cost half the price of the second gift, and the fourth gift was half the price of the third gift. How much money does he have left?
\qquad
10. Mona has a $\mathbf{5 0}$-foot length of string. She plans to cut it into 25 equal sized pieces. Write a formula to show the relationship between the number of cuts c and the number of pieces \boldsymbol{p}.

Figures that have the same shape but are not necessarily the same size are similar figures. The symbol \sim means "is similar to." In the figures at the right, $\triangle S R P \sim \triangle N L M$ because their shapes are the same, but their sizes are different.

When figures are similar, the lengths of their corresponding sides are proportional.

Use a proportion to find the length of $\overline{\mathbf{N L}}$.

1. Write a proportion. $\quad \frac{S R}{N L}=\frac{P R}{M L}$
2. Substitute.

$$
\frac{10}{y}=\frac{20}{14}
$$

3. Solve.

$$
y \times 20=10 \times 14
$$

Corresponding Sides
 $\overline{P S}$ and $\overline{M N} \quad \overline{P R}$ and $\overline{M L} \quad \overline{S R}$ and $\overline{N L}$
 Corresponding Angles
 $\angle P$ and $\angle M \quad \angle R$ and $\angle L \quad \angle S$ and $\angle N$

$$
\begin{gathered}
y \times 20=140 \\
y=7
\end{gathered}
$$

So the length of $\overline{\mathbf{N L}}$ is 7 .
When figures are similar, their corresponding angles are equal.
Since $\triangle S R P \sim \triangle N L M, \angle S=\angle N, \angle R=\angle L$, and $\angle P=\angle M$.
Write whether the two figures appear to be congruent, similar, or neither.
1.

2.

3.

The figures are similar. Use a proportion to find each missing length.
4.

$y=$ \qquad
6.

$x=$ \qquad $z=$ \qquad
5.

$a=$ \qquad , $b=$ \qquad
\qquad
7.

$a=$ \qquad $b=$ \qquad
8.

$a=$ \qquad b = \qquad $c=$ \qquad , $d=$ \qquad
9.

$x=$ \qquad $y=$ \qquad $z=$ \qquad

Problem Solving

 ReasoningA ratio that compares two similar figures is called a scale factor. For a triangle whose sides are one-half the length of the sides of a similar triangle, the scale factor is $\frac{\mathbf{1}}{\mathbf{2}}$. For a square whose sides are three times longer than the sides of another square, the scale factor is $\mathbf{3}$. Complete the table.

Figure	Sides	Scale Factor	Sides of Similar Figure
10.	trapezoid	$\mathbf{8 , 1 6 , 5 , 7}$	$\frac{1}{2}$

Test Prep \star Mised Review

13 The table shows the biggest sunflowers shown at a summer carnival.

Farm	Size of Sunflower
Sunnydale	$4 \frac{1}{8} \mathrm{in}$.
Brookside	$5 \frac{1}{8} \mathrm{in}$.
Rock Point	$5 \frac{3}{5} \mathrm{in}$.
Black Mesa	$5 \frac{3}{8} \mathrm{in}$.

Which shows the farms in order from smallest to largest sunflower shown?

A Rock Point, Black Mesa, Brookside, Sunnydale
B Sunnydale, Brookside, Rock Point, Black Mesa
C Sunnydale, Brookside, Black Mesa, Rock Point
D Sunnydale, Rock Point, Brookside, Black Mesa
14) Carlos bought 3.5 yards of fabric to make costumes for the school play. The fabric cost $\$ 3.88$ a yard. How much did all the fabric cost?

F \$1.36
G $\$ 13.58$
H $\$ 135.80$
J \$1,358
\qquad

Polygons are classified by the number of sides they have. A triangle has 3 sides and a quadrilateral has 4.

Pentagons, hexagons, and octagons are three other types of polygons.

Regular polygons are polygons that have all sides congruent and all angles congruent.

Triangle

Quadrilateral

Regular Polygons

Pentagon

Hexagon

Octagon

Use a centimeter ruler or a protractor to answer.

1. Measure the sides of Pentagon A. Are they all congruent? \qquad
2. Measure the angles of the same pentagon. Are they all congruent? \qquad
3. Is Pentagon A regular? Why or why not? \qquad
4. Measure the sides of Hexagon B. Are they all congruent? \qquad
5. Measure the angles of the same hexagon. Are they all congruent? \qquad
6. Is Hexagon B regular? Why or why not? \qquad
7. A rectangle has four 90° angles. Is a rectangle always a regular quadrilateral? \qquad
8. A rhombus has four congruent sides. Is a rhombus always a regular quadrilateral? \qquad
9. Which quadrilateral is always a regular quadrilateral? \qquad

Use a protractor to measure the angles of each regular polygon on page 205. Then complete the chart.
10.

Name of Regular Polygon	Measure of One Angle	Sum of the Measures of All Angles
Triangle		
Quadrilateral		
Pentagon		
Hexagon		
Octagon		

15. Look for a pattern in the last column. A heptagon is a seven-sided polygon. Use your pattern to predict the sum of the angle measures
of a heptagon. \qquad
16. What do you think is the measure of each angle of a regular
heptagon? Justify your reasoning. \qquad
Problem Solving Reasoning Solve.
17. Jerome knows that the total distance around his house is 120 feet. His house is in the shape of a regular quadrilateral. What are the dimensions of his house?
18. Paula has been told that the product of the length and width of her house is 900 square feet. Her house is in the shape of a rectangle. Name three possible dimensions of her house.

Quick Check

Solve.
19. Two angles of a quadrilateral have measures 80° and 40°. The other two angles are congruent. What is the measure of each of these two angles? \qquad
Suppose $\triangle A B C \sim \triangle P Q R$ and $\angle A=40^{\circ}, \angle B=70^{\circ}, A B=4.6 \mathrm{~cm}$ and $B C=3 \mathrm{~cm}$. In $\triangle P Q R, P Q=3.6 \mathrm{~cm}$. Write the other measures.
20. $\angle C$ \qquad 21. $\overline{A C}$ \qquad
22. $\angle P$ \qquad
23. $\overline{P R}$ \qquad 24. $\overline{Q R}$ \qquad
25. The sum of the angles of a regular hexagon is 720°. What is the measure of each angle? \qquad Work Space.
\qquad

Sometimes it is helpful to use a diagram to solve problems.
In this lesson, you will draw a geometric figure to help you solve problems involving angles, triangles, and quadrilaterals.

Tips to Remember:

1. Understand 2. Decide 3. Solve 4. Look back

- Ask yourself: Have I solved a problem like this before? How did I solve it?
- Picture the situation described in the problem. Draw a picture to show what is happening.
- Think about strategies you have already learned. Try using one of them to solve the problem.

Solve.

1. Two angles of a triangle measure 54° and 23°. What type of triangle is it? Explain your answer.

Think: How do you find the measure of the third angle of the triangle? What is its measure?
\qquad
\qquad
Answer \qquad
\qquad
\qquad
3. An equilateral triangle has a perimeter of 15 ft . What is the measure of each side and each angle?
2. Two lines intersect to form vertical angles. The measure of one angle is 145°. What are the measures of the other three angles?

Think: What do you know about vertical angles?
\qquad
\qquad
Answer \qquad
\qquad
4. Two angles of a triangle have the same measure. The third angle measures 30°. What is the measure of each angle?

Solve.

5. Two angles of a triangle measure 102° and 39°. What is the measure of the third angle of the triangle?

6. A triangle is an isosceles right triangle. What is the measure of the congruent angles of the triangle?

7. An exterior angle of a triangle is supplementary to the interior angle next to it. If one exterior angle is 70°, what type of triangle is it?

Extend Your Thinking

11. Look back at problem 5. What type of triangle is it? Explain your answer.
12. Look back at problem 9. What is the sum of the measures of the two interior angles opposite the exterior angle?

Draw and label a figure to illustrate the description.

1. ray $X Y$
2. line segment RS
3. line $P Q$
4. $\triangle X Y Z$
5. $\overleftrightarrow{A B} \perp \overleftrightarrow{F G}$

Give the name of each figure.
8. $\overleftrightarrow{C D} \| \overleftrightarrow{\kappa}$
5. radius $\overline{O Y}$
6. right angle $A B C$
9. $\overleftrightarrow{T R}$ intersecting $\overleftrightarrow{M N}$ at \mathbf{G}
10.

13.

Measure, then classify the angle.
16.

14.

\qquad
15.
\qquad

\qquad
\qquad

18.
18.

12.
\qquad

19: Find the length of $\overline{A B}$: \qquad
20. Find the measure of $\angle A B C$. \qquad
21. $\angle Q T S$ measures 135°. Find the measure of
$\angle D C B$. \qquad

22. What is the measure of the complement
of $\angle T S R$? \qquad

23. Draw a 35° angle.
24. Construct a segment congruent to $\overline{M X}$.

25. Construct an obtuse isosceles triangle. Label the obtuse angle $A B C$.
$\triangle S Q R$ is isosceles. Find the measure of each angle.
26. $\angle S R Q=$ \qquad
27. $\angle S Q R=$ \qquad
28. $\angle R S U=$ \qquad
29. $\angle U S T=$ \qquad
30. $\angle Q S T=$ \qquad

Solve.
31. One diameter divides a circle into 2 equal parts. What is the greatest number of equal parts

8 diameters can divide a circle into? \qquad

1 Which picture shows perpendicular segments?

A

B

D
(2) $\angle A$ and $\angle B$ are complements. The measure of $\angle A$ is 43°. What is the measure of $\angle B$?
F 137°
H 47°
G 90°
J 43°

3 Use this picture to answer the question.

Which two angles are vertical angles?
A $\angle P A Q$ and $\angle Q A B$
B $\angle P A Q$ and $\angle B A C$
C $\angle P A Q$ and $\angle A B R$
D $\angle P A Q$ and $\angle R B S$
(4) Which answer shows a regular hexagon?

F

G

J

5 Which figure below is similar to this figure?

A

C

B

D

6 Which of these figures are congruent?

H 1 and 4
G 1 and 3
(7) Use this figure.

What is the measure of $\angle A$?
A 30°
C 50°
B 40°
D 60°

8 Use this figure.

What is the measure of $\angle B A C$?
F 180°
H 62°
G 152°
J 28°

9 Use your ruler and the figure to answer the question.

brick wall	
	brick wall

stone wall
brick wall
scale: 1 inch = 4 feet
This drawing shows the plan for a walled garden. How long will the stone wall be?
A $1 \frac{3}{4}$ inches
C $3 \frac{1}{2}$ feet
B $1 \frac{3}{4}$ feet
D 7 feet
(11) Which three fractions are equivalent to $\frac{3}{5}$?

F $\frac{3}{5}, \frac{4}{6}, \frac{5}{7}$
G $\frac{6}{10}, \frac{9}{15}, \frac{12}{20}$
H $\frac{6}{10}, \frac{9}{10}, \frac{5}{3}$
J $\frac{9}{15}, \frac{12}{20}, \frac{15}{20}$
K Not here
(11) Wilson had 28 sheets of stickers. He gave $\frac{1}{4}$ of the sheets to his sister. How many sheets did he give to his sister?
A 4
C 14
E NH
B 7
D 28

12 Use your protractor. What is the measure of this angle?

F 40°
H 70°
K NH
G 50°
J 130°

13 What is the prime factorization of 108 ?
A $2^{2} \times 3^{2}$
B $2^{3} \times 3^{2}$
C $2 \times 6 \times 9$
D 3×6^{2}
E NH

UNIT 8 - TABLE OF CONTENTS
 Using Formulas in Geometry

Lesson Page
1 Algebra: Perimeter and Area 215
2 Areas of Triangles and Parallelograms 217
3 Algebra: Circumference 219
4 Algebra: Area of a Circle 221
5 Space Figures 223
6 Algebra: Surface Area 225
7 Problem Solving Strategy: Find a Pattern 227
8 Volume 229
9 Problem Solving Application: Use a Formula 233

- Unit 8 Review 235
- Cumulative Review \star Test Prep 237

Dear Family,

During the next few weeks, our math class will be using formulas in geometry. You can expect to see homework that provides practice with determining the area and perimeter of a polygon. Here is a sample you may want to keep handy if needed.

Area and Perimeter of a Rectangle

Area is a measure in square units of a region or surface. To find the area of a rectangle, use the formula $A=I \times w$ where $I=$ length and $w=$ width.
Example: Find the area of rectangle \mathbf{C}.

14 ft	7 ft		Write the formula.	$\begin{aligned} & A=I \times w \\ & A=(14) \times(7) \end{aligned}$
			Substitute for I and \boldsymbol{w}.	
	C	14 ft	Multiply. Label the answer.	$A=98 \mathrm{ft}^{2}$

Perimeter is a measure of the distance around a figure. To find the perimeter of a rectangle, use the formula $P=\mathbf{2}(I+w)$.

Example: Find the perimeter of rectangle C shown above.

$$
\begin{array}{ll}
P=2(I+w) & \text { Write the formula. } \\
P=2(14+7) & \text { Substitute for } I \text { and } w . \\
P=2(21) & \text { Work inside }() \text { first. } \\
P=42 \mathrm{ft} & \text { Multiply. Label the answer. }
\end{array}
$$

During this unit, students will need to continue to practice finding the area and perimeter of various figures.

Sincerely,

The perimeter (\boldsymbol{P}) of a figure is the distance around it. The area (\mathbf{A}) of a figure is the amount of surface it covers.
A complex figure is made up of more than one shape.
Find the perimeter (P) of this complex figure.
Perimeter of a rectangle: $\boldsymbol{P}=\mathbf{2 (I + w)}$

1. Find any missing measures.

The measure m is missing. You can see that

$$
2+m+2=7 . \text { So, } m=7-2-2, \text { or } 3 \text {. }
$$

2. Find the sum of the lengths of its sides.

$$
\begin{aligned}
P & =2+3+3+1+2+4+7+6 \\
& =28 \text { units }
\end{aligned}
$$

Find the area (A) of the complex figure.

1. Divide the figure into simple shapes.
2. Determine any missing measures. The length of Rectangle \mathbf{C} is $\mathbf{7}$. The width is $\mathbf{6 - 3}$ or $\mathbf{4 - 1}$.
3. Find the area of each shape. Since the figure was divided into rectangles, use $\boldsymbol{A}=\mathbf{I} \boldsymbol{w}$.

Area of rectangle $B=3 \times 2$, or 6 , units ${ }^{2}$
Area of rectangle $C=3 \times 7$, or 21 , units 2
Area of rectangle $D=1 \times 2$, or 2 , units ${ }^{2}$

4. Find the sum of the areas.

$$
\begin{aligned}
A & =6+21+2 \\
& =29 \text { units }^{2}
\end{aligned}
$$

Find the perimeter and area.

1. Perimeter

Area \qquad

Find the perimeter and area of each figure.
2.

$P=$ \qquad
$A=$ \qquad
5.

$P=$ \qquad
$A=$ \qquad
3.

$P=$ \qquad
$A=$ \qquad
6.

$P=$ \qquad
$A=$ \qquad
4.

$P=$ \qquad
$A=$ \qquad
7.

$P=$ \qquad
$A=$ \qquad

Problem Solving

Reasoning
8. A lawn is rectangular and measures 120 feet by 90 feet. One bag of fertilizer covers $4,000 \mathrm{ft}^{2}$. How many bags of fertilizer must be purchased? Explain.

Test Prep $*$ Mixed Review

(9) What do you need to do to each side of this equation to solve it?
$n-\frac{5}{8}=\frac{2}{3}$
A Add $\frac{5}{8}$
C Add $\frac{2}{3}$
B Subtract $\frac{5}{8}$
D Subract $\frac{2}{3}$
(10) Lindsey is planning a party. She will have 3 tables for every 14 guests. Which answer shows three ways to write the ratio of tables to guests?
F $14: 3,14$ to $3, \frac{14}{3}$
H 3: 14, 3 to $14, \frac{3}{14}$
G $4: 13,4$ to $13, \frac{4}{13}$
J $3: 14,3$ to $14, \frac{14}{3}$

Look at the figures below. The length of the rectangle and the base of the triangle are the same. The width of the rectangle and the height of the triangle are the same.
The area of the triangle is $\frac{1}{2}$ the area of the rectangle.

length (I)
6 cm

Area (A) of a triangle $=\left(\frac{1}{2}\right) b \times h$
$A=\left(\frac{1}{2}\right) 6 \times 3$
$A=\left(\frac{1}{2}\right) 18$
$A=9 \mathrm{~cm}^{2}$

Find the area of the triangle.
1.

$$
A=
$$

$A=$ \qquad
$A=$ \qquad
2.

$A=$ \qquad

$A=$

$A=$ \qquad

Look at the triangle and parallelogram shown below. The parallelogram is made from two congruent triangles.
The area of the parallelogram is equal to the sum of the area of one triangle and the area of the other triangle, or $\mathbf{2}$ times the area of the triangle.

$$
\begin{aligned}
A & =\left(\frac{1}{2}\right) b \times h \\
& =\left(\frac{1}{2}\right) 8 \times 3 \\
& =\left(\frac{1}{2}\right) 24 \\
& =12 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area }(A) \text { of parallelogram } & =\left(\frac{1}{2}\right) b \times h+\left(\frac{1}{2}\right) b \times h \\
& =\left(\frac{1}{2}\right) 8 \times 3+\left(\frac{1}{2}\right) 8 \times 3 \\
& =\left(\frac{1}{2}\right) 24+\left(\frac{1}{2}\right) 24 \\
& =12+12 \\
& =24 \mathrm{~cm}^{2}
\end{aligned}
$$

In simplest form, the formula $A=\left(\frac{1}{2}\right) b \times h+\left(\frac{1}{2}\right) b \times h$ is $A=b \times h$.
So to find the area of a parallelogram, use $\boldsymbol{A}=\boldsymbol{b} \times \boldsymbol{h}$.
Find the area of each parallelogram.
3.

$A=$ \qquad
4.

$A=$ \qquad

Problem Solving

 ReasoningSolve.
5. Choose the formulas you need and use those formulas to find the area of this figure.

Test Prep * Mixed Review

(6) Use the proportion to answer the question.

$$
\frac{276}{12}=\frac{184}{x}
$$

Mr. Lin drove 276 miles on 12 gallons of gas. At that rate, how many gallons of gas would he need to drive $\mathbf{1 8 4}$ miles?
A 23 gal
C 8 gal
B 12 gal
D 4 gal

7 Reyna bought $\frac{2}{3}$ yard of blue ribbon, $\frac{3}{8}$ yard of green ribbon, and $\frac{2}{3}$ yard of red ribbon.
How much ribbon did she buy in all?
F $1 \frac{17}{24} \mathrm{yd}$
H $1 \frac{1}{24} \mathrm{yd}$
G $1 \frac{1}{3} \mathrm{yd}$
J $\frac{17}{24} \mathrm{yd}$
\qquad

The distance around a circle is its circumference.
The diameter is the distance across a circle through its center. The radius is the distance from the center of a circle to a point on the circle.

Use a string and a centimeter ruler to measure the circumference and diameter of each object. Find the ratio of the circumference to the diameter to the nearest 0.01 cm .

Object	Diameter	Circumference	$\frac{\text { Circumference }}{\text { Diameter }}$
1.	quarter		
2.	clockface		
	top of drinking glass		

Your answers in the last column should be about 3.14. The Greeks used their letter π (pi) to name this ratio.

You can use a formula to find the circumference of a circle.

The circumference (C) of any circle with diameter \boldsymbol{d} is $\mathbf{C = \pi d}$.
or
The circumference (C) of any circle with radius r is $C=2 \pi r$.
The decimal 3.14 and the fraction $\frac{\mathbf{2 2}}{7}$ are two accepted
 approximations for π.

$$
\begin{array}{rlrl}
\text { radius } & =8 \mathrm{~m} & \text { radius } & =\frac{3}{4} \mathrm{ft} \\
C & =2 \pi r & C & =2 \pi r \\
& \approx 2 \times 3.14 \times 8 \mathrm{~m} & & \approx 2 \times \frac{22}{7} \times \frac{3}{4} \mathrm{ft} \\
& \approx 50.24 \mathrm{~m} & & \approx \frac{33}{7} \text { or } 4 \frac{5}{7} \mathrm{ft}
\end{array}
$$

$$
\begin{aligned}
& \text { diameter }=10 \mathrm{yd} \\
& C=\pi d \\
& \approx 3.14 \times 10 \mathrm{yd} \\
& \approx 31.4 \mathrm{yd}
\end{aligned}
$$

Find the circumference for each circle. Use 3.14 for π.
4. radius $=18 \mathrm{~m}$
diameter $=5 \mathrm{~cm}$
radius $=7 \mathrm{dm}$
diameter $=20 \mathrm{~mm}$
$C \approx$ \qquad $C \approx$ \qquad
$C \approx$ \qquad
$C \approx$ \qquad

Find the circumference for each circle. Use $\frac{22}{7}$ for π.
5. radius $=\frac{1}{2} \mathrm{ft}$
diameter $=\frac{7}{8} \mathbf{m i}$
radius $=14$ yd \quad diameter $=49 \mathrm{in}$.
\qquad $C \approx$ \qquad
\qquad $C \approx$ \qquad

Find the circumference for each circle. Use 3.14 or $\frac{22}{7}$ for π.
6. radius $=12 \mathrm{yd}$
diameter $=1 \frac{3}{8} \mathrm{in}$.
radius $=25 \mathrm{~cm}$
diameter $=9 \frac{1}{3} \mathrm{ft}$
\qquad $C \approx$ \qquad
$C \approx$ \qquad
\qquad

Problem Solving

Solve.

7. How does the circumference of a circle change when its diameter is doubled?
\qquad \longrightarrow
8. The diameter of the earth at the equator is about $12,756 \mathrm{~km}$. What is the circumference of the earth at the equator?
\qquad

Quick Check
Find the area of the figure.
11. Square, side length: 3.2 cm \qquad
12. Rectangle, length and width: 6 in. and 4.7 in. \qquad
13. Parallelogram, base and height: 1.5 ft and 4.2 ft \qquad
14. Triangle, base and height 0.6 mi and 0.22 mi \qquad

Find the circumference of the circle.
15. diameter: 7 in. \qquad 16. radius: 10 in . \qquad

The formulas for circumference and area of a parallelogram can help you find the area of a circle.

Circumference (C) $=\mathbf{2 \pi r}$

$$
\begin{aligned}
& \frac{1}{2}(C)=\frac{1}{2}(2 \pi r) \\
& \frac{1}{2}(C)=\pi r
\end{aligned}
$$

Divide a circle into 20 equal sections, Shade half of the sections. Separate the sections and arrange them in a side-by-side pattern as shown. This arrangement resembles a parallelogram.

$\begin{aligned} \text { Area of a parallelogram } & =\boldsymbol{b} \cdot \mathrm{a} \\ \text { Area of a circle } & =\boldsymbol{\downarrow} r \cdot \stackrel{\downarrow}{r} \text { or } \pi r^{2}\end{aligned}$

The area (A) of any circle with radius \boldsymbol{r} is given by the formula $\boldsymbol{A}=\boldsymbol{\pi} \boldsymbol{r}^{2}$.

$$
\begin{aligned}
A & =\pi r^{2} \\
& =\pi(3)^{2} \\
& \approx 3.14 \cdot 9 \\
& \approx 28.26 \mathrm{ft}^{2}
\end{aligned}
$$

$$
A=\pi r^{2}
$$

$$
=\pi(3)^{2}
$$

or

$$
\approx \frac{22}{7} \cdot 9
$$

$$
\approx \frac{198}{7} \text { or, } 28 \frac{2}{7} \mathrm{ft}^{2}
$$

Find each area. Use 3.14 or $\frac{22}{7}$ for π.
1.

$A \approx$ \qquad $A \approx$ \qquad

$A \approx$ \qquad
radius $=1.1 \mathrm{dm}$
$A \approx$ \qquad
\qquad

Find the area of each circle. Use 3.14 or $\frac{22}{7}$ for π.
3. $r=4 \mathrm{yd}$
$d=4 \mathrm{yd}$
$r=11 \mathrm{~cm}$
$d=9 \mathrm{~m}$
$A \approx$ \qquad
$A \approx$ \qquad
$A \approx$ \qquad
$A \approx$ \qquad
4. $d=3.4 \mathrm{dm}$
$d=21 \mathrm{in}$.
$r=50 \mathrm{~mm}$
$r=4 \frac{1}{2} \mathrm{ft}$
$A \approx$ \qquad
$A \approx$ \qquad
$A \approx$ \qquad
$A \approx$
\qquad

Given the circumference of a circle, find the radius and area rounded to the nearest tenth. Use 3.14 for π.
5. $C=4 \mathrm{yd}$ \qquad
\qquad
$A \approx$ \qquad
$A \approx$ \qquad

Problem Solving Reasoning
6. Divide this figure into a triangle, semicircle, and rectangle. Then find the area.
$C=6.2 \mathrm{~km} \quad C=1.25 \mathrm{mi}$

Solve. Use 3.14 for π.

7. Use areas of circles, rectangles, and triangles to find the area of the figure at the right.

8. What is the area of the largest circle that can be cut out of a piece of paper 21 cm long and 23 cm wide?

Test Prep \star Mixed Review

9 Hillary drew a chalk circle on the playground to use in a game. The circle had a diameter of 34 inches. What was the circumference?
A About 53 in.
C About 214 in.
B About 107 in.
D About 3,632 in.
(11) Main Street School has 576 students. $\frac{1}{6}$ of the students are in sixth grade. How many students are in sixth grade?
F 3,456
H 96
G 576
J 86

Prisms have two congruent bases.

A cube is a special rectangular prism. It has 6 square faces, 12 edges, and 8 vertices.

A rectangular prism has 6 faces, 12 edges, and 8 vertices.

A triangular prism has bases that are triangles. It has 5 faces, 9 edges, and 6 vertices.

Pyramids have only one base. They are named for the shape of their base. The other sides have one point in common called the vertex.

triangular pyramid

square pyramid

pentagonal pyramid

Other space figures have curved surfaces.

A cylinder has two bases that

1. rectangular prism

Answer each question. Write Yes or No.

A cone has one base that is a circle. A cone has one vertex.

A sphere has a center that is the same distance from every point of the sphere.

Name one object that reminds you of the given space figure.
cylinder
square pyramid
2. Can a pyramid have a triangle for a base?
3. Can a cone have a square base? \qquad
4. Does a prism always have congruent and parallel bases? \qquad

It a pox snapea like a rectangular prism could pe untolded,
it might look like this:

Circle the figure that can be made from each pattern.

Can these patterns be folded into a cube? Write Yes or No.
8.

\qquad

12. How many faces does a square pyramid have? \qquad
13. How many edges does a cube have? \qquad
14. Name a space figure that does not have any vertices.

Work Space.

The surface area (SA) of a space figure is the sum of the areas of all of its surfaces. To find the surface area of a rectangular prism, first find the area of each pair of opposite faces and bases. Then find the sum of the areas.

Sides

$$
\begin{aligned}
A & =2(2 \mathrm{~cm} \cdot 1 \mathrm{~cm}) \\
& =2\left(2 \mathrm{~cm}^{2}\right) \\
& =4 \mathrm{~cm}^{2}
\end{aligned}
$$

Front and Back

$$
\begin{aligned}
A & =2(3 \mathrm{~cm} \cdot 1 \mathrm{~cm}) \\
& =2\left(3 \mathrm{~cm}^{2}\right) \\
& =6 \mathrm{~cm}^{2}
\end{aligned}
$$

Top and Bottom

$$
\begin{aligned}
A & =2(3 \mathrm{~cm} \cdot 2 \mathrm{~cm}) \\
& =2\left(6 \mathrm{~cm}^{2}\right) \\
& =12 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Surface Area } \begin{aligned}
(S A) & =\text { area of side }+ \text { side }+ \text { front }+ \text { back }+ \text { top }+ \text { bottom } \\
& =4 \mathrm{~cm}^{2}+6 \mathrm{~cm}^{2}+12 \mathrm{~cm}^{2} \\
& =22 \mathrm{~cm}^{2}
\end{aligned}
$$

Find the surface area of each prism.
1.

$S A=$ \qquad cm^{2}
$S A=$ \qquad cm^{2}

$$
S A=
$$

\qquad cm^{2}
2.

12 ft

$$
S A=\ldots f^{2}
$$

$S A=$ \qquad in. ${ }^{2}$

4 in.
$S A=$ \qquad in. ${ }^{2}$

You can use a formula to find the surface area of a rectangular prism.

$$
S A(\text { rectangular prism })=2(I \times w)+2(I \times h)+2(w \times h)
$$

A rectangular prism is a cube when each face of the cube is a square.

$$
S A(\text { cube })=6 s^{2}
$$

Use a formula to find the surface area of each figure.
3.

$S A=$ \qquad mm^{2}

$S A=$ \qquad

$S A=$ \qquad in. ${ }^{2}$

Problem Solving

 Reasoning4. Karen wants to wrap a 10 by 8 by 5 -inch box with wrapping paper. She has one sheet of wrapping paper that measures 15 by 15 inches. Does she have enough wrapping paper?

Explain. \qquad
5. Lorain has $\mathbf{2}$ quarts of paint. Each quart covers $100 \mathrm{ft}^{2}$. She is going to paint a stage prop that is the shape of a cube. Each edge measures 5 feet. If she gives it two coats, will she have enough paint? Explain. \qquad
\qquad

Lest Rrep * Muxed Review

6 Lorenzo bought 6 pounds of potatoes. The potatoes cost $\$.86$ for 2 pounds. How much did Lorenzo's potatoes cost?
A $\$ 5.16$
C $\$ 1.72$
B $\$ 2.58$
D $\$.86$

7 Ms. Lowry owns $85 \frac{1}{2}$ acres of land. She plants soybeans on $\frac{2}{3}$ of the land. How many acres does she plant with soybeans?
F $128 \frac{1}{4}$ acres
H 57acres
G $86 \frac{1}{6}$ acres
J $56 \frac{2}{3}$ acres
\qquad

Problem Solving Strategy: Find a Pattern

In this lesson, you will find a pattern and discover a mathematical relationship.

Problem

A polyhedron is a space figure formed by many polygons. A prism and a pyramid are examples of polyhedra. There is a mathematical relationship between the number of vertices, faces, and edges of a polyhedron. See if you can find this relationship.
(1) Understand As you reread, ask yourself questions.

- What facts do you know?

A polyhedron has vertices, faces, and edges.

- What do you need to find?

2 Decide Choose a method for solving.

Try the strategy Find a Pattern. Use the polyhedra in the table below.

Polyhedron	\mathbf{V}	\mathbf{F}	\mathbf{E}	$\mathbf{V}+\mathbf{F}$

(3) Solve

Fill in the number of vertices, faces, and edges for each polyhedron in the table.

Compare the column labeled $\boldsymbol{V}+\boldsymbol{F}$ with the column labeled \boldsymbol{E}. Describe the relationship.
\qquad
\qquad
(4) Look back Write this relationship in formula form.

Solve. Use the Find a Pattern strategy or any other strategy you have learned.

1. A rectangular prism has 8 vertices and 12 edges. A triangular prism has 6 vertices and 9 edges. How many vertices and how many edges does a hexagonal prism have?

Think: How many sides does a hexagon have?

Answer

\qquad
3. Based on your answer to problem 1, how many faces does a hexagonal prism have?
5. A cube has an edge that is $\mathbf{5}$ inches long. How many square inches of construction paper are needed to completely cover the cube?
7. Find the total number of unit cubes in the figure.

9. Marita and Alexandra have 63 marbles. Alexandra has twice as many as Marita. How many marbles does each have?
11. Your family phone bill is $\$ 108$. This is $\frac{1}{3}$ more than last month's bill. How much was last month's bill?
2. How many squares are there in the figure below?

Think: How many 3×3 squares are there?

Answer

\qquad
4. How many faces does a pentagonal pyramid (base is a pentagon) have?
\qquad
6. The sides of a rectangle are in the ratio 1:4. The perimeter of the rectangle is 60 inches. Find the length and the width.
\qquad
8. Draw the figure that comes next in this pattern:

10. There are 12 posts equally spaced along the perimeter of a square patio. How many posts are on each side of the patio?
12. Mitchell's driveway is 32 ft long. He plans to lengthen it so it will be $\frac{2}{5}$ longer. How long will the new driveway be?

The volume (\boldsymbol{V}) of any object is the number of cubic units that can fit inside the object.

The volume (V) of a rectangular prism with length \boldsymbol{I}, width \boldsymbol{w}, and height \boldsymbol{h} is $\boldsymbol{V}=\boldsymbol{l} \boldsymbol{w h}$.

If you multiply the number of units of length (I) by the number of units of width (w), you find the number of cubic units on the base. Multiply this product by the units of height (h) to find the volume.

$$
\begin{aligned}
V & =l w h \\
& =3 \mathrm{~cm} \cdot 4 \mathrm{~cm} \cdot 2 \mathrm{~cm} \\
& =24 \mathrm{~cm}^{3}
\end{aligned}
$$

A cube is a rectangular prism in which every face is a square and every side (s) or edge is the same length.

The volume (\boldsymbol{V}) of a cube with side length \boldsymbol{s} is $\boldsymbol{V}=\boldsymbol{s}^{3}$.

$$
\begin{aligned}
V & =s^{3} \\
& =(2 \mathrm{~cm})^{3} \\
& =2 \mathrm{~cm} \cdot 2 \mathrm{~cm} \cdot 2 \mathrm{~cm} \\
& =8 \mathrm{~cm}^{3}
\end{aligned}
$$

Find the volume of each figure.

$v=$ \qquad
2.

$V=$ \qquad
$V=$ \qquad

$V=$ \qquad

Yoü begin by finding the area of the base (\bar{B}). Then you multiply by the height to find the volume.

The base of a triangular prism is a triangle. The base of a cylinder is a circle.

Volume of Triangular Prism

Triangular Prism

$$
\begin{aligned}
\boldsymbol{V} & =(\text { Area of base }) \cdot \text { height } \\
& =\left(\frac{1}{2} \cdot a \cdot b\right) \cdot h \\
& =\left(\frac{1}{2} \cdot 3 \mathrm{ft} \cdot 4 \mathrm{ft}\right) \cdot 5 \mathrm{ft} \\
& =\left(6 \mathrm{ft}^{2}\right) \cdot 5 \mathrm{ft} \\
& =30 \mathrm{ft}^{3}
\end{aligned}
$$

The volume of the triangular prism is $30 \mathrm{ft}^{3}$.

Volume of Cylinder

$$
\begin{aligned}
V & =(\text { Area of base }) \cdot \text { height } \\
& =\left(\pi \cdot r^{2}\right) \cdot h \\
& \approx 3.14 \cdot(5 \mathrm{~cm})^{2} \cdot 4 \mathrm{~cm} \\
& \approx 3.14 \cdot 25 \mathrm{~cm}^{2} \cdot 4 \mathrm{~cm} \\
& \approx 3.14 \cdot 100 \mathrm{~cm}^{3} \\
& \approx 314 \mathrm{~cm}^{3}
\end{aligned}
$$

The volume of the cylinder is about $314 \mathrm{~cm}^{3}$.

The volume (\boldsymbol{V}) of a prism or cylinder with area of the base (\boldsymbol{B}) and height \boldsymbol{h} is $\boldsymbol{V}=\boldsymbol{B} \boldsymbol{h}$.

Find the area of the base (B) of each figure. Then find the volume (V).

$B=$
\qquad
$\boldsymbol{V}=$
$B=$ \qquad

\qquad
$V=$ \qquad
\qquad

Find the volume of each figure.
4.

$$
V=
$$

\qquad

$V=$ \qquad

$V=$ \qquad
5.

$$
V=
$$

$V=$ \qquad
6.

$V=$ \qquad
$V=$ \qquad
7.

$$
V=
$$

8.

$$
\begin{aligned}
& B= \\
& V=
\end{aligned}
$$

$V=$ \qquad
$V=$ \qquad

$B \approx$ \qquad
$V \approx$ \qquad

$B \approx$ \qquad
$V \approx$ \qquad

Copyright © Houghton Mifflin Company. All rights reserved.

Complete.

9. hexagonal prism: $\boldsymbol{B}=\mathbf{3 0} \mathrm{cm}^{2}$

$$
\begin{aligned}
& \boldsymbol{h}=25 \mathrm{~cm} \\
& \boldsymbol{V}= \\
& \hline
\end{aligned}
$$

triangular prism: $\boldsymbol{B}=\mathbf{2 0} \mathrm{cm}^{2}$

$$
\begin{aligned}
& \boldsymbol{h}= \\
& \boldsymbol{V}=\mathbf{2 5 0} \mathrm{cm}^{3}
\end{aligned}
$$

10. pentagonal prism: $B=$ \qquad

$$
\begin{aligned}
& h=18 \mathrm{ft} \\
& V=414 \mathrm{ft}^{3}
\end{aligned}
$$

octagonal prism: $B=13$ in. ${ }^{2}$
$h=11 \mathrm{in}$.
$V=$ \qquad

Problem Solving Reasoning
11. What is the volume of the prism at the right? \qquad

12. What would the volume of the prism be if the length, width, and height were halved? \qquad

Quick Check

Find the surface area of the space figure.
14. A cube with edges of length 5 cm \qquad
13. By what number is the volume of the original prism divided when the length, width, and height are halved? \qquad

Work Space.

15. A rectangular prism with length 2.5 m , width 6 m , and height 2 m \qquad
16. A cylinder, radius of base 5 in ., height 8 in . \qquad
Find the volume of the space figure.
17. A rectangular prism with length $3 \frac{1}{2}$ in., width 5 in . and height $2 \frac{1}{2} \mathrm{in}$. \qquad
18. A cylinder whose base has an area of $45 \mathrm{~m}^{2}$ and a height of 20 m \qquad
19. A triangular prism whose base has an area of $8.7 \mathrm{~mm}^{2}$ and whose height is 15 mm \qquad

To solve some problems, you need to know a formula.
In this lesson, you will use the appropriate formula to find the perimeter, area, surface area or volume of plane or solid figures.

Tips to Remember:

$\begin{array}{llll}\text { 1. Understand } & \text { 2. Decide } & \text { 3. Solve } & \text { 4. Look back }\end{array}$

- Think about what the problem is asking you to do. What information does the problem give you? What do you need to find out?
- Picture the situation described in the problem. Draw a picture to show what is happening.
- Think about strategies you have already learned. Try using one of them to solve the problem.

Solve.

1. The Carson family measured the perimeter of their family room and found it to be 54 ft . If the room is $\mathbf{1 5 \mathrm { ft } \text { long, }}$ how wide is it?

Think: What is the formula for the perimeter of the room? What values can you substitute into the formula?

Answer

\qquad
3. Beth wants to put a fence around a circular garden. The diameter of the garden is $\mathbf{5}$ feet. Fencing is $\$ 1.25$ per foot. How much fencing should she buy? How much will it cost?

Think: What formula do you need to use to find the distance around a circle?
2. The Carsons want to order a pizza. A large pizza (16 in. in diameter) is $\$ 9.60$ and a medium pizza (8 in . in diameter) is $\$ 4.80$. Which is the better buy? Explain your answer.

Think: What formula do you need to use to compare the size of the pizzas?

Answer \qquad
4. Elijah is drawing a circle inside a square so that the circle touches each side of the square. If the area of the square is $16 \mathrm{in}^{2}{ }^{2}$, what is the area of the circle?

Think: What is equal to the diameter of the circle?

Answer

Answer

\qquad

Solve.
5. On one wall of the a family room is a circular dart board with a radius of 20 cm . What is its circumference?
7. A gift box for a shirt is $\mathbf{1 2} \mathrm{in}$. long, 9 in . wide, and 1.5 in . high. What is the volume of the box?
9. A triangular sail has a base of 5 yd and a height of 8 yd . How many square yards of sail is that?
11. A square has a side equal to the diameter of a circle. Which shape has the greater perimeter? Which shape has the greater area?
13. The length, width, and height of a rectangular prism are multiplied by 3. How is the volume of the prism changed?
\qquad
15. A bookcase is 3 ft wide, 6 ft high, and 12 in. deep. How much floor space will it cover? How much wall space?
\qquad

Extend Your Thinking

17. Look back at problem 7. How many boxes would a roll of wrapping paper cover if the roll is $\mathbf{1 2 ~ f t ~ l o n g ~ a n d ~} 30 \mathrm{in}$. wide?
18. What is the area of the wall space covered by the dart board in problem 5 ?
19. How much wrapping paper would it take to cover the box in problem 7?
20. A lot is 22 yd long and 13 yd wide. If fencing costs $\$ 1.25$ a foot, how much will it cost to fence the lot?
\qquad
21. Square B has one side double the length of Square A. How do the perimeters compare? How do the areas compare?
\qquad
22. The area of circle A is 12.56 in. ${ }^{2}$ The radius of circle B is one half of the radius of circle A. How does the area of circle B compare with the area of circle A ?
\qquad
23. A car traveled $\mathbf{2 4 0}$ miles in $\mathbf{4}$ hours. What was the average speed of the car?
\qquad
24. Look back at problem 10. Explain the method you used to solve the problem.

Find the perimeter of each polygon.
1.

13 in.

2.

Find the circumference of each circle. Use $C=\pi d$ and 3.14 for π.
3.

4.

Find the area of each figure.

Fing the volume 8 f each fiaure lisa 々 14 far far $=$
9.

18:

Find the surface area of each figure.
11.

\qquad
12.

Solve.
13. What space figure has a base and a surface from the boundary of its base to its vertex? \qquad
14. The floor of a room is rectangular and measures 10 ft by 16 ft . What formula would you use to determine the amount of wall-to-wall carpeting you would need to cover the floor of the room? Explain.
\qquad
\qquad
\qquad
15. A square has a side that measures 16 in. If you cut from the square the largest circle possible, what would the circumference of the circle be? What formula did you use?
(1) Use the picture below.

What is the surface area of the prism?
A 288 in. ${ }^{2}$
C 192 in. ${ }^{2}$
B 208 in. ${ }^{2}$
D 144 in. ${ }^{2}$

2 Use the picture below.

What is the volume of this cylinder?

$$
\begin{aligned}
& \mathbf{F} \approx 62.5 \mathrm{~cm}^{3} \quad \mathbf{H} \approx 196.3 \mathrm{~cm}^{3} \\
& \mathbf{G} \approx 157.1 \mathrm{~cm}^{3} \quad \mathbf{J} \approx 85.4 \mathrm{~cm}^{3}
\end{aligned}
$$

3 Use your inch ruler and the picture to answer the question.

What is the perimeter of this figure?
A $1 \frac{1}{4} \mathrm{in}$.
C $7 \frac{1}{2}$ in.
B $3 \frac{3}{4} \mathrm{in}$.
D 12 in .

4 Use your centimeter ruler. Which figure has an area of exactly $3 \mathbf{c m}^{2}$?

(5) Which figure is a triangular prism?

A

B

D

Use the picture to answer questions 6 and 7.

6 Which two angles are vertical angles?
F $\angle A X B$ and $\angle B X D$
$\mathbf{H} \angle A X B$ and $\angle C X D$
G $\angle A X B$ and $\angle A X C$
$\mathbf{J} \angle A X B$ and $\angle E X D$

7 Which two angles are supplements?
A $\angle A X B$ and $\angle A X E$
C $\angle A X B$ and $\angle E X F$
B $\angle A X B$ and $\angle A X F$
D $\angle A X B$ and $\angle E X D$

Use the figures to answer questions 8-10.

1

5

8 Which two figures are congruent?
F 1 and 4
H 3 and 8
G 2 and 6
J 5 and 7

9 Which two figures are similar but not congruent?
A 1 and 4
C 3 and 8
B 2 and 6
D 5 and 7
(1D) What is the name for figure 1 ?
F Pentagon
H Hexagon
G Octagon
J Quadrilateral

11 The rectangular gymnasium at the Kids' Club has an area of $\mathbf{8 0 0}$ square feet. Two opposite sides are each 40 feet long. How long are the other two sides?
A 360 ft
C 40 ft
B 200 ft
D 20 ft

12 Rick wrote a report that was $8 \frac{2}{3}$ pages long. How is that number written as an exact decimal?
F 8.23
J $8 . \overline{6}$
G $8 . \overline{3}$
K NH
H 8.6
UNIT 9 - TABLE OF CONTENTS
Data, Statistics, and Probability
Lesson Page
1 Comparing Data 241
2 Clusters, Gaps, and Outliers 243
3 Problem Solving Strategy: Conjecture and Verify 245
4 Surveys and Samples 247
5 Selecting a Sample 249
6 Evaluating Conclusions 251
7 Problem Solving Application: Use a Table 253
8 Probability 255
9 The Counting Principle 257
10 Independent Events 259
11 Dependent Events 261

- Unit 9 Review 263
- Cumulative Review \star Test Prep 264

Dear Family,

We will be using this vocabulary: probability the number from 0 to 1 describing the chance of an event occurring
graph a pictorial representation of a point, function, or data sample a subset of a set of data
During the next few weeks, our math class will be learning about data, statistics, and probability.

You can expect to see homework that provides practice determining probability. Here is a sample you may want to keep handy to give help if needed.

Probability

Probability (P) is the chance of an event occurring and is expressed using the formula

$$
P=\frac{\text { number of favorable outcomes }}{\text { total possible number of outcomes }}
$$

Example: Suppose this spinner is spun once. What is the probability of the spinner pointing to \mathbf{C} ?

1 Determine the number of favorable outcomes. Since only 1 outcome or section of the spinner is labeled \mathbf{C}, write $\mathbf{1}$ as the top number of the probability fraction.

2 Determine the total possible number of outcomes. Since the spinner can point to any of 8 outcomes or sections, the bottom number of the probability fraction is 8 .

The probability that the spinner will point to C is $\frac{1}{8}$.
During this unit, students will need to continue finding probabilities and working with data and statistics.

Sincerely,

\qquad

You can use a double-bar graph to compare two sets of data on one graph. Use the steps below to make a double-bar graph of this dáa.

Favorite Sport of 500 Students								
Sport	Football	Hockey	Soccer	Baseball	Basketball	Swimming	Track	
sixth graders	45	25	40	50	35	15	40	
seventh graders	25	15	20	50	55	45	40	

1. Label the axes and write a title.
2. What is the greatest number of votes for any sport? \qquad
Which would be the best interval to use on the vertical scale: 2, 5, or 10? \qquad Complete the vertical scale.

Look at the bars for football. The black bar shows the number of sixth graders. The red bar shows the number on seventh graders.
3. How many sixth graders chose hockey? \qquad Draw a black bar to show how many. How many seventh graders chose hockey? \qquad Draw a red bar.
4. Finish the graph. Draw bars for the other sports.

You can use a double-line graph to compare change or growth over time.
Use the steps below to graph this data.

Average Monthly Temperatures (${ }^{\circ}$ F) of Two Cities																
	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec				
Boston	29	30	39	48	58	68	74	72	65	55	45	34				
San Francisco	49	52	53	56	58	62	63	64	65	61	55	49				

\longmapsto Boston \quad San Francisco
11. Use grid paper. Make a double-bar graph using this data.

Time Spent on Activities (Hours)

	Sleep	Eat	Play	Study
School Days	8	2	1	2
Weekends	9	3	5	2

5. What is the highest temperature in the table? \qquad
6. Complete the scale. Make sure it extends far enough.
7. Label the axes. Write a title.
8. Find the line for February. What was the temperature in Boston? Draw a black dot on the graph.
9. Continue placing black dots for Boston. Connect them with black lines.
10. Do the same steps for San Francisco, using red dots. Connect them with red lines.

Test Prep x Mired Review

13 Rosa is using beads to make a necklace. Every fourth bead is red. Every fifth bead is larger than the others. After how many more beads will Rosa need a large red one?

A 6
B 8
C 10
D 15
12. Use grid paper. Make a double-line graph using this data.

Number of Students Absent

	Mon	Tues	Wed	Thurs	Fri
Mrs. Kim's class	3	5	0	2	6
Mr. Lopez's class	2	1	3	3	3

14 The diameter of a circle is 6 cm . About how many times longer is the circumference?

F About twice as long
G About three times as long
H About four times as long
J About five times as long

In one school, students can earn 5 points for each problem of the day they solve. The data below show the points earned by 25 sixth graders.

Points Earned by 6th Graders												
185	190	60	80	90	90	100	105	110	110	130	95	105
130	125	195	100	90	95	120	120	100	95	95	105	

The line plot shows where there are groups of data points, called clusters. The number of points cluster around 100. You can also see gaps on the line plot where there are no data points. There are also data points that represent values that are much greater or less than the other values. These values are called outliers; then, 60, 185, 190, and 195 are outliers.

The mean of the data is 112.8 . The median is 105 . The mode is 95 .
To find out how the outliers affect The mean without 60, 185, 190, and 195: the mean of the data, find the mean without the outliers:

$$
\frac{2,190}{21} \approx 104.29
$$

So, the mean without the outliers is 104.29.
The outliers change the mean by more than 8 points. This indicates that the mean is not the best description of the data. Since the data clusters around 100, the median of 105 is the better measure of central tendency to use.

Use the line plot to answer the questions.
Number of Words in First 20 Sentences of a Novel

1. Does the data cluster or is it spread out?
2. Are there outliers? If so, where? \qquad
3. Find the mean, median, mode, and range of the data.
4. Which measure of central tendency best describes the data? Explain.

Use the line plot to analyze weekly salaries at the Toy Factory.
5. Where do the data cluster?
\qquad
6. Are there outliers?

If so, where? \qquad
7. Find the mean, median, and mode.
\qquad
8. What measure of central tendency best describes the data?

Use the line plot to analyze the number of hours preschoolers watch TV weekly.
9. Where do the data cluster?
\qquad
10. Are there outliers?

If so, where? \qquad
11. Find the mean, median, and mode.
12. What measure of central tendency best describes the data? \qquad
Problem Solving Reasoning
13. Karl's math quiz scores for nine weeks are: $95,96,65,92,98$, 100, 55, 94, and 95 . His teacher allows students to drop their two lowest quiz scores, then find the average. How much difference will this make in Karl's average?

Lest Prep $亠$ M Maed Review

(14) Jose bought $4 \frac{1}{2}$ gallons of paint to paint the porch of his house. He has used $2 \frac{2}{3}$ gallons. How much does he have left?
A $\frac{5}{6}$
C $1 \frac{5}{6}$
B $1 \frac{1}{6}$
D $2 \frac{5}{6}$

Weekly Salaries at the Toy Factory (in Dollars)

X
X

\qquad

When a problem does not give enough information to solve it directly, you may need to begin with a conjecture about the answer.

To make your conjecture, use number sense, reasoning, and any information you have. Then test your conjecture to verify it or to see how you should revise it.

(1) Understand

As you reread, ask yourself questions.

- What do you need to find?
- What information do you have?

2 Decide Choose a method for solving.
 - Try the strategy Conjecture and Verify.

Is the number you need greater or less than 91? Explain.
\qquad
\qquad

- Is the number you need odd or even? How do you know?
- What will your first guess be? \qquad
(3) Solve

Verify your conjecture. Try again if you need to.

- Test your conjecture.

Conjecture
96

- Should your next try be greater or less? \qquad

(4) Look back Check your answer.
 - Will the average be 91 ?

Solve. Use the Conjecture and Verify strategy or any other strategy you have learned.

1. Taryn's average on three science tests is 92. She scored 87 on the first test and 100 on the second test. What did she score on the third test?

Think: If Taryn averaged 92 on $\mathbf{3}$ tests, what is the sum of the points she scored?

Answer

3. The numbers of track meets that each student in a class has attended are: 6, 3, 4, 4, 1, 0, 4, 0, 2, 2, 3, 1, 7, 6, 4, 5, 2, $0,3$. Make a frequency table for the data.
4. Look back at problem 3. True or false: The mean and the median are the same?
5. A store had 3 brands of CD players. Each CD player came in 3 colors: black, white, and red. How many choices of CD players did the store have?
6. For the set of numbers $96,87,95,90,85$, 90 , and 94 , choose the correct statement.
a) The median is greater than the mode.
b) The mean is less than the mode.
c) The mean is greater than the median.
7. Three consecutive whole numbers have a sum of 114. What are the numbers?
8. The mean of a set of numbers is 15 . There are 6 numbers in the set. What is the sum of the numbers in the set?

Think: Do you have to use addition to find the sum?

Answer \qquad
4. Use the data in problem 3 to answer this question. What is the average number of track meets attended by each student?
6. The product of three consecutive whole numbers is 504 . What are the numbers?
8. The length of a rectangle is $\mathbf{7}$ more than its width. The area of the rectangle is $120 \mathrm{~cm}^{2}$. What are the dimensions of the rectangle?
10. Lucy purchased 2 pairs of socks for $\$ 2.95$ a pair. She also purchased 2 sweaters for $\$ 29.50$ each. Tom purchased 3 sweaters for half the price Lucy paid. Who spent more money?
12. What time is $\mathbf{3 6} \mathrm{h}, \mathbf{3 0} \mathrm{min}, \mathbf{1 0 ~ s e c}$ before 10:00 Р.м.?

Often TV newscasters report the results of surveys. Those results tell something about a large group or population. But the survey does not poll every person in the group.

A sample is a part of the population that is used to get information about the whole group. Poll-takers want the answers given by the sample to be similar to those of the whole group. Then it is a representative sample. A representative sample can be used to make predictions about the whole group.

Predicting a Number

A representative sample of 120 out of 1,200 students was used to see how many students would go to a basketball game. To predict how many students would go to the game, use a proportion.

Number Going (from sample) $\rightarrow \frac{84}{\rightarrow 120}=\frac{n}{1,200} \leftarrow$ Number Going (from total population) Total Sample Number $\quad \rightarrow \mathbf{1 2 0}=\overline{1,200} \leftarrow$ Total Population

$$
\begin{aligned}
120 n & =84 \cdot 1,200 \\
120 n & =100,800 \\
n & =100,800 \div 120 \\
n & =840
\end{aligned}
$$

From their sample, you can predict that about 840 students will go to the game.

Predicting a Percent

In a representative sample of middle school students,
72 out of 120 students said that they would run in the Fun Run.

To predict what percent of all the students will run, use a proportion. Based on the sample, you can predict that 60 out of 100 students, or $\mathbf{6 0 \%}$, of the students will run in the Fun Run.

$$
\begin{aligned}
& \text { Runners in Sample } \\
& \text { Total in Sample } \\
& \rightarrow \mathbf{7 2} \\
& \mathbf{1 2 0}=\frac{x}{100} \leftarrow \text { Part } \\
& \mathbf{1 2 0 x}=\mathbf{7 2} \cdot \mathbf{1 0 0} \\
& \mathbf{1 2 0 x}=\mathbf{7 , 2 0 0} \\
& x=\mathbf{7 , 2 0 0} \div \mathbf{1 2 0} \\
& x=\mathbf{6 0}
\end{aligned}
$$

Solve.

1. In a sample, $\mathbf{2 6}$ out of $\mathbf{5 0}$ sixth graders said they planned to go to the school dance. Based on this sample, how many of the $\mathbf{5 0 0}$ sixth graders would you predict will go to the dance?
2. In a sample of seventh graders, 17 said "yes" and 13 said "no" when asked if they would enter a poster contest. Based on this sample, how many of 300 seventh graders will enter the poster contest?
3. In a sample of fifth graders, 18 said "yes" and 7 said "no" when asked if they planned to buy a yearbook. Based on this sample, how many of 250 fifth graders would you predict will buy a yearbook?
4. In a sample of high school students, 120 out of 150 said they planned to go to college. Based on this sample, how many of the 1,500 would you predict will go to college?
5. A sample of $\mathbf{5 0}$ sixth graders were asked whom they planned to vote for in the election for class president. The results are shown at the right. Predict what percent of the vote each candidate will get.

Candidate	Number of Students	Percent of Vote
J. Rodriquez	8	
L. Johnson	13	
P. Hoffman	12	
K. Cheng	17	

6. Before an election, 1,000 registered voters were asked if they were in favor of building a new library. The results were Yes: 450, No: 380, No Opinion: 170. Of 10,179 registered voters, about what percent would you expect to vote yes?
7. A representative sample of the sweatshirt sizes of 30 sixth graders was taken. The results were Small: 3, Medium: 10, Large: 17. How many of each size should be ordered for 300 students in the sixth grade?

Quick Check

The data below shows the number of siblings and cousins that 8 friends had.

Name	Siblings	Cousins	Name	Siblings	Cousins
Elmer	0	6	Lamont	3	10
Gary	1	9	Rosa	0	2
George	2	15	Tyesha	1	5
Judy	1	7	Yoko	1	8

8. Use grid paper. Draw a double bar graph of the data.
9. On grid paper, Make a line plot of the number of cousins that the 8 friends had.
10. Do the data about the cousins have any outliers? Explain.
11. In a poll, 13 out of $\mathbf{2 5}$ students said they prefer pizza to spaghetti. If the sample were representative, about how many students out of $\mathbf{2 4 0}$ prefer pizza?

Work Space.

A large school district wants to use a survey to find out how many families have a child who will be entering kindergarten in the fall. They need a representative sample if their poll is to be accurate. They considered the following samples.

Sample 1:
Surveying 20 families from
a voter registration list

Sample 2:

Surveying one tenth of all families with children already in school

Sample 3:
Surveying randomly one tenth of all families in the school district

The first sample is probably too small. A sample that is too small is likely to be biased. In this case, a sample size of about one tenth of the population is adequate.

The second sample is biased. Families without children will not be included.

A random sample is one in which every family has an equal chance of being chosen. For this survey, a random sample might be chosen by listing every family alphabetically and choosing every tenth family. A random sample will have the best chance of being representative.

Solve.

1. What is another way of choosing a random sample of the families?
2. Another method of choosing a sample is to mail every family a postcard to return. Do you think the people who return the postcards will form a random sample? Why or why not?

Suppose you survey 1 out of 10 people for a random sample. Tell how many of each group you would survey.
3. $\mathbf{1 , 2 4 0}$ drivers \qquad 480 shoppers \qquad 151 parents \qquad
4. 25,642 students \qquad 37,848 account holders \qquad
5. $\mathbf{1 . 2}$ million teachers \qquad 200,000 viewers \qquad

What is the population you would choose a sample from for each product?
6. pet food \qquad school supplies \qquad
7. coloring books \qquad baseball bats \qquad
8. horse blankets \qquad baby strollers \qquad

The way a survey question is worded can also make the survey results biased. Compare these two questions.

Should bicyclists have the opportunity to use our town's excellent paths?

Should bicyclists be allowed to ride recklessly and endanger our citizens by using the paths that our city has built for walkers?

The first question makes it sound like letting bicyclists use the paths is a good idea. The second question makes it sound like a bad idea. People who would answer "yes" to the first question might answer "no" to the second. Either question leads to biased results.

A better question might be:
Should bicyclists be allowed to use city walking paths?

Problem Solving Reasoning

9. Crispy Crunch cereal company asked five children of employees to name their favorite cereal. Four out of 5 said Crispy Crunch was their favorite. What is wrong with this sample?
10. A radio station invites people to call in to vote yes or no for a new community pool. Will the results be representative of the entire community?
11. Diane wanted to know the most popular book of sixth graders. She surveyed $\mathbf{2 0}$ sixth grade girls out of 200 in the sixth grade. Is this a random sample?
12. Bob used this question in a survey; "Do you agree with the principal that homework is important?" Will he get unbiased results? If not, how would you rewrite the question?

Test Prep \star Mixed Review

13 Harry's test scores for one class were 90, 85, 0 , 88, and 85. Which number will change the most if the outlier is disregarded?
A The mean
C The mode
B The median
D The highest score
(14) Evaluate the expression $\frac{9 a^{2}}{4}$ when $a=\frac{2}{3}$.

F	1	H	4
G	$2 \frac{1}{4}$	J	9

F 1
J 9

Sometimes data is displayed in a way that readers will draw an incorrect conclusion.

The width of the bottles makes it appear that medical costs have quadrupled. By looking at the scale, you see that costs have only doubled.

Conclusion: Medical costs were four times as much in 1998 as in 1988.

Tell what may have influenced the conclusion.

1. Incomes of Dentists and Doctors

Conclusion: Dentists make only half as much as doctors. \qquad throughout the day. \qquad
Conclusion: Body temperature varies a lot

Tell why these conclusions may be biased.
3. Four out of 5 dentists surveyed recommend Bubble Gum Toothpaste.
\qquad
5. The best athletes and champions choose Zeebe running shoes. \qquad Zeeberunning shoes.
\qquad
7. Using the graphs below, which company appears to have increased its wages more over the years 1995-1998? \qquad

8. Which company actually increased its wages more? \qquad
9. What makes both graphs misleading? \qquad

Problem Solving Solve. Use Graphs A and B. Reasoning

10. Which graph would you use to convince people that video rentals were staying about the same? Why?

Graph B

11. Which graph gives a more accurate picture of the data? Explain.
\qquad
\qquad

Test Prep \star Mixed Review

12. What is the surface area of the prism?

A $38 \mathrm{~cm}^{2}$
B $94 \mathrm{~cm}^{2}$
C $120 \mathrm{~cm}^{2}$
D $188 \mathrm{~cm}^{2}$

13 What is the volume of the prism?

F $38 \mathrm{~cm}^{3}$
G $94 \mathrm{~cm}^{3}$
H $120 \mathrm{~cm}^{3}$
J $188 \mathrm{~cm}^{3}$
\qquad

Sometimes you need to use the information in a table to solve a problem.

A baseball player can determine his or her batting average if the number of hits and the number of times at bat (at bats) are known. In this lesson you will use tables such as the one shown to solve problems.

Player	Hits	At Bats
John	12	35
Marie	11	30
Taniqua	10	25
Sidney	14	36

Tips to Remember:

1. Understand 2. Decide 3. Solve 4. Look back

- Think about what the problem is asking you to do. What information does the problem give you? What do you need to find out?
- Compare the labels on the table with the words and numbers in the problem. Find the facts you need from the table.
- Predict the answer. Then solve the problem. Compare your answer with the prediction.

Solve. Use the table above.

1. Batting averages are rounded to the nearest thousandth. Find John's batting average.

Think: How do you find an average?
\qquad
\qquad
Answer
3. Does any player have a batting average of more than 0.5?

Think: How can you decide without finding each average?
\qquad
\qquad
Answer \qquad
2. What is Marie's approximate batting average?
Think: $\frac{11}{30}$ is close to what fraction?

Answer \qquad
4. Which player had the greatest batting average?

Think: How do you find the player with the best batting average?
\qquad
\qquad
Answer \qquad

Tennis players spin their racket and look at the logo on the end of the handle to see who serves first in a match．The opponent calls＂up＂ or＂down．＂A tennis team kept this tally for some of its players．

5．Make a double－bar graph from the information in the tally．

7．Look at Table 1 below．Were there more deliveries during the week or on the weekend？

Table 1

Florist Deliveries						
M	T	W	T	F	S	S
8	3	12	7	6	18	16

9．Look at the table in problem 7．What was the average number of deliveries for each day？Is that number greater than the median？

Extend Your Thinking

11．Look back at problem 10．If Roger worked 8 hours on Day 1 instead of 2 hours， would that change his choice of mean， median，or mode？

Player	Outcomes	
	Up	Down
Danielle	为	＊＊11
Julie	凪 III	IIII
Erica	戌1	为1

6．In what fraction of all the outcomes was the logo＂up＂？

8．Look at Table 2 below．Roger and Beth each earn $\$ 7.50$ an hour．How much did each of them earn for the week？

Table 2

	Hours Worked				
	Day 1	Day 2	Day 3	Day 4	Day 5
Roger	2	2	6	8	7
Beth	6	3	8	5	8

10．If Roger and Beth had to choose the mean，median，or mode to determine how much they would get paid for the week，what should each person choose？
\qquad

12．Look back at problem 6．Explain how you found your answer．

The probability of an event is a number between $\mathbf{0}$ and $\mathbf{1}$ that expresses how likely the event is to happen. The probability of an event is the ratio of the number of favorable outcomes to the total number of outcomes. Probabilities can be written as decimals or fractions. You can use a number line to represent probabilities.

impossible	less likely	more likely
0	$\frac{1}{2}$	1

There are two kinds of probability: experimental probability and theoretical probability.

The experimental probability is the ratio of actual results. Suppose you spin this spinner 1,000 times and land on red 491 times. The experimental probability of landing on red is $\frac{491}{1,000}$ or about $\frac{1}{2}$.

To find the theoretical probability of landing on red, first count the possible outcomes. The outcomes must be equally likely. There are 4 possible outcomes with this spinner, since the spinner is equally likely to stop on any of the 4 parts. Two parts are red, so there are 2 favorable outcomes. Write a ratio to find the theoretical probability.
$P=\frac{\text { number of favorable outcomes }}{\text { total number of outcomes }}$

$$
P(r e d)=\frac{2}{4} \text { or } \frac{1}{2}
$$

So, the theoretical probability, written $P(r e d)$, is $\frac{1}{2}$.

Other examples:

What is the probability of not spinning red?
$P($ not red $)=\frac{\text { number not red }}{4}=\frac{2}{4}$ or $\frac{1}{2}$
Spinning red and not spinning red are complements because any outcome must be one or the other.

To predict the number of times the spinner will stop on red in 5,000 spins, use the probability to form a proportion.

So the spinner will probably stop on red about 2,500 times in 5,000 spins.

Complete. Do the activity at least 50 times to find the experimental probability.

Activity	Possible Outcomes	Event	Theoretical Probability	Experimental Probability
1. Tossing a coin		P (heads)		
		P (tails)		
		P (not heads or tails)		
2. Rolling a number 1-6 cube		P (1)		
		$\mathrm{P}(2$ or 5)		
		$P($ even number)		
		P (not a prime number)		

3. Give an example of complements from the events above.

Problem Solving Solve. Reasoning
4. Light bulbs were tested randomly the day they were made. The results are shown at the right. If 10,000 bulbs were produced each day, how many bulbs would you expect to be defective each day?

Results	Monday	Tuesday
Defect	$\mathbf{5}$	$\mathbf{2}$
No defect	$\mathbf{1 5}$	$\mathbf{8}$

5. A batter has a batting average of 0.300 . This means the probability that he will get a hit is 0.3. How many times would you expect him to get a hit out of 10 times at bat?

Quick Check

6. Describe a method of choosing a random sample of the entire sixth grade class at your school.
\qquad
\qquad
7. The populations of three cities are $1,250,000$ people, $1,330,000$ people, and 1,180,000 people. Describe how you could make the differences between the populations of these cities show up clearly on a vertical bar graph.
\qquad
Find the probability of rolling the number or numbers on a number cube.
8. $P(3)$
9. $\mathrm{P}(2$ or 4$)$
10. P (not 1)

Work Space.

An event that is made up of 2 or more events is called a compound event. Study the tree diagram below that shows the possible outcomes when you spin the spinner and then pick a card.

Event
Spin this spinner.

Then pick a card.

Tree Diagram

Outcomes

red, A
red, B
red, C
white, A
white, B
white, C
blue, A
blue, B
blue, C

There are 9 possible outcomes.
You can also multiply the number of outcomes for each event to find the total number of possible outcomes. This is called the counting principle.

First Event
red, white, or blue $3 \times$

Second Event
A, B, or C possible outcomes $3=9$

Make a tree diagram to show all the outcomes.

1. Spin this spinner.

Then flip a coin.

3. Pick a card.

Then spin this spinner.

2. Roll this number

1-6 cube.

Then flip a coin.

4. Toss a nickel.

Then toss a dime.

Then toss a quarter.

Use the counting principle to find the number of possible outcomes.
5. Pick a card.

6. Pick a shirt.

Then pick a pair of shorts.

7. Pick from 4 breads, then from 5 fillings.
8. Pick from 3 flavors, then from 2 sauces, then from 2 toppings.

Pick from 5 colors, then from 7 designs.

Roll one 1-6 number cube, then roll another.

Pick from 3 crusts, then from 5 toppings.

Pick from 4 entrees, then from 3 desserts, then from 2 beverages.

Problem Solving Reasoning
9. How many ways are there to travel from Sun City to Big Mountain by way of Valleyville if Route 9A is closed for
repairs?

10. Sally's program this summer will be swimming, then drawing, then creative writing. What is the probability of choosing this program at random?

Summer Park Activities
9:00-10:00

Swimming, Volleyball, Baseball 10:15-11:15
Drawing, Music 11:30-12.30 Creative Writing, Drama

Test Prep \star Mixed Review

11) A winter coat normally sells for $\mathbf{\$ 1 7 5}$. It is on sale for $\mathbf{2 0 \%}$ less. What is its cost now?
A $\$ 35$
C $\$ 140$
B $\$ 120$
D $\$ 172.50$
12. Which of these methods would give a representative sample of the customers of a local drugstore?
F Call every sixth person on the list of people who get their film developed there
G Put a questionnaire in the local newspaper and have people send it in
H Survey every tenth person that comes in the door
J Survey 20 people in the parking lot that have a bag from the drugstore

Rolling a number cube and tossing a coin are examples of independent events because the outcome of one event has no effect on the other.

What is the probability of rolling a 4 or 5 , then tossing heads? The tree diagram shows all the possible outcomes.

Tree diagram

Roll a number cube

Then toss a coin

There are 12 possible outcomes. Two are favorable.

Outcomes

1, heads	4, heads
1, tails	4, tails
2, heads	5, heads
2, tails	5, tails
3, heads	6, heads
3, tails	6 , tails

$$
P(4 \text { and head })=\frac{2}{12}
$$

You can also multiply the probability of each event to find the probability of two or more independent events.

$$
\begin{aligned}
& P(4 \text { or } 5)=\frac{2}{6} \quad P(\text { head })=\frac{1}{2} \\
& P(4 \text { or } 5 \text { and head })=\frac{2}{6} \times \frac{1}{2}=\frac{2}{12}
\end{aligned}
$$

The probability of two independent events occurring is the product of their probabilities.

$$
P(A \text { and } B)=P(A) \times P(B)
$$

Make a tree diagram to find each theoretical probability.

1. Pick a card.

Toss a coin.

$\mathrm{P}(\xi$, heads $)=$ \qquad $\mathrm{P}($ not \diamond, tails $)=$ \qquad $P(=$, heads or tails) \qquad

Use multiplication to find the theoretical probability.
2. Pick a marble.

Roll a 1-6 cube.

Then spin this spinner. P(red, black) = \qquad
3. Spin this spinner.

$\mathrm{P}($ white, white $)=$ \qquad
$\mathrm{P}($ not white, black $)=$ \qquad
$\mathrm{P}($ red, black or white $)=$ \qquad
4. Spin the spinner three times.

$P($ sea $)=$ \qquad
$\mathrm{P}($ ate $)=$ \qquad
$P($ sat $)=$ \qquad

$$
\mathrm{P}(\text { tea })=
$$

\qquad
5. Roll two 1-6 number cubes.
$P(2,6)=$ \qquad $P(3,3$ or 4$)=$ \qquad $P($ not $5, \operatorname{not} 1)=$ \qquad $P(2$ or 4,3 or 5$)=$ \qquad

Problem Solving

 Reasoning6. A red shirt, a white shirt, a blue shirt, plaid shorts, and striped shorts are in a drawer. You reach in without looking to pick a shirt and shorts. What is the probability you will pick a red shirt and plaid shorts?
7. When you roll two number cubes labeled 1-6, what sums are possible? Which sum is most likely to occur? Explain.

Test Prep \star Mixed Review

8 Julia wants to know which store in a mall shoppers visit most often. Which is the best method for selecting a sample for this survey?

A Ask 100 people in the center of the mall at random
B Ask 50 people in the largest department store in the mall at random
C Put a questionnaire in the flyer that is mailed to people's homes and have them return it
D Ask 1 out of every 10 women she meets in the mall
9) The numbers 1 through 10 are written on separate pieces of paper of equal size and dropped into a bag. What is the probability of drawing an 8 or a 5 ?
F $\frac{1}{10}$ H $\frac{2}{5}$
G $\frac{1}{5}$
J $\frac{9}{10}$

Compound events are dependent events when the outcome of the first event affects the outcome of the second. Picking a sock out of a suitcase and then picking another sock out of the suitcase are dependent events. After the first pick, there is one fewer sock in the suitcase.

What is the probability of picking two white socks?

You can use the same formula you did for independent events to find the probability of dependent events.

$$
P(A \text { and } B)=P(A) \times P(B)
$$

$P($ white and white $)=P($ white $) \times P($ white $)$
First pick: $P($ white $)=\frac{2}{6}$ or $\frac{1}{3}$
After the first sock is picked, there are only 5 socks left. If the first sock was white, only 1 of the remaining socks is white.

Second pick: $\mathrm{P}($ white $)=\frac{\text { number white }}{\text { total number }}=\frac{1}{5}$
The probability of picking two white socks is $\frac{1}{3} \times \frac{1}{5}$, or $\frac{1}{15}$.

Use the socks above to find the probability.

1. P (gray and gray) \qquad
2. P (white and gray) \qquad
3. $P($ red and red) \qquad

P(gray and white)
$\mathrm{P}([$ white or gray], [gray or white])
$\mathrm{P}([$ gray, gray] or [white, white])

Are the events independent (I) or dependent (D)? Write I or D.
4. Pick a name from a hat, then pick another name. \qquad
6. One player picks a card from a deck of cards and keeps it, then another player picks a card.
8. A number cube is rolled. A 4 lands up. The cube is rolled again. A 4 lands up. \qquad
5. Pick a name from a hat, put the name back in the hat, then pick another name.
\qquad
7. One student chooses a sticker without looking and keeps it. The next student chooses a sticker. \qquad
9. You take a math test. Then you take a science test. \qquad
10. Pick one card, then another.

12. Pick a marble, then pick another marble.

11. Pick a name, then another name.

13. Pick one ball, then another.
$P(1,3)=$ \qquad
(1) (2) (3) (4)
(5) (6) (7)
$P(6$, not 2$)=$ \qquad $P(5,6$ or 7$)=$ \qquad $P(2,2)=$

Problem Solving Reasoning
14. Four horses, Prince, Botie, Patches, and Beauty, are chosen at random for horseback riding lessons. Two people take a lesson. What is the probability they will get Prince and Botie?
15. A game has 3 bonus cards and 6 chance cards. A player draws a card, then another card. What is the probability both will be
bonus cards? \qquad
\qquad -.

17. a 1 and a 7

\qquad .
18. two even numbers
16. At a sandwich restaurant, you can choose of 1 of 7 breads, 1 of 3 meats, 1 of 4 extras, and 1 of 4 sauces. How many different
sandwiches can be made? \qquad
One number cube is numbered from 1 to 6 and another is numbered from 7 to 12 . Write the probability of rolling

A dresser drawer contains 5 white socks, 4 blue ones, and 9 black ones. First one sock and then another is drawn without looking. Find the probability of getting
19. 2 white socks \qquad .
20. two black socks \qquad -.
\qquad

Solve. Use the graph to answer each question.

1. Which store increased its sales steadily from July to September? \qquad
2. During which month did Store B have the same amount of sales as the previous month? \qquad

Solve. Use the line plot.
3. Which measure-mean, median, or
mode-best describes the data?
Explain. \qquad

Number of Books Written by 20 Authors

Solve.

4. Charles wants to learn the favorite color of the students in his school. He plans to survey the first 25 people he meets in the hallway. Would this be a representative sample? Explain.
5. A 1-6 number cube is tossed twice. What is the probability of tossing two fours? \qquad
6. If the experiment in exercise $\mathbf{5}$ was repeated 100 times, about how many times would you predict two fours would be tossed?
7. Sue has 3 pairs of socks-red, blue, and brown. She has two pairs of shoes-black and brown. What is the probability she could choose at random brown socks and shoes? \qquad
8. The table shows the outcomes of 10 coin tosses. In simplest form, what were these experimental probabilities: \mathbf{P} (heads), \mathbf{P} (tails), and \mathbf{P} (heads or tails)? \qquad
9. Write 3 different mixed numbers that have a mean of $3 \frac{1}{4}$.

heads	tails
IIII	HHI I

Use this diagram for exercises $1-3 . \triangle A B C \cong \triangle A E D$.

1 What is the length of $\overline{A B}$?
A Longer than 25 inches
B Equal to 25 inches
C Shorter than 25 inches
D Cannot be determined from the information
2) If $\angle E=45^{\circ}$ and $\angle E A D=25^{\circ}$, what is the measure of $\angle A D C$?

F 35°
G 70°
H 110°
J Cannot be determined from the information.
(3) Which angle is supplementary to $\angle A D B$?

A $\angle B$
B $\angle B A C$
C $\angle A C B$
D $\angle C A D$

The results of a survey of $\mathbf{1 5}$ boys and $\mathbf{2 5}$ girls are shown in the bar graph below. Use the graph to answer questions 4 and 5.

(4) Which conclusion is true about the data?

F All the boys with calculators had watches
G Calculators are more popular with boys than with girls

H Watches are more popular with boys than with girls

J Some girls that did not have a calculator had a watch

5 Assume that the sample is representative of 360 students in a school. About how many of these students would you expect to have calculators?

A About 50 students
B About 100 students
C About 150 students
D About 200 students
6) A newspaper reported that one holiday weekend, 75% of all families would be cooking outdoors on a grill. Of these families, $\mathbf{8 0 \%}$ would be grilling beef. What percent of all families would be grilling beef?
F 60%
H 45%
G 50\%
J 40\%
UNIT 10 - TABLE OF CONTENTS Integers and Equations
Lesson Page
1 Postive and Negative Numbers 267
2 Comparing Integers 269
3 Adding Integers 271
4 Subtracting Integers 274
5 Problem Solving Application: Choose the Operation 277
6 Multiplying Integers 279
7 Dividing Integers 281
8 Integers and the Order of Operations 283
9 Algebra: Integers and Expressions 285
10 Algebra: Integers and Equations 287
11 Problem Solving Strategy: Write an Equation 289

- Unit 10 Review 291
- Cumulative Review \star Test Prep 292

Dear Family,

During the next few weeks, our math class will be learning about integers and equations. You can expect to see homework that provides practice with evaluating expressions. Here is a sample you may want to keep handy to give help if needed.

We will be using this vocabulary:
integer any number in the set $\{\ldots,-3$, $-2,-1,0,1,2,3, \ldots\}$
equation a mathematical sentence in which the values on both sides of the equal sign (=) are equal
numerical expression a combination of one or more numbers and operations algebraic expression a combination of one or more variables, numbers, and operations

! Evaluating Expressions

To evaluate an expression means to substitute given numbers into the expression, then simplify.
Example: Evaluate $2 a+\frac{b}{3}+c$ when $a=-4, b=-6$, and $c=3$.

$$
2 a+\frac{b}{3}+c \quad \text { 1. Write the expression. }
$$

$$
2(-4)+\frac{-6}{3}+(3) \quad \text { 2. Substitute for } a, b \text {, and } c .
$$

$$
2(-4)+\frac{-6}{3}+(3) \quad \text { 3. Follow the order of operations. }
$$ Multiply and divide from left to right.

$$
(-8)+(-2)+(3)
$$

4. Add and subtract from left to right.

-7

The value of $2 a+\frac{b}{3}+c$ when $a=-4, b=-6$, and $c=3$ is -7 .
During this unit, students will need to continue practicing adding, subtracting, multiplying, and dividing integers.

You can use a number line to show whole numbers and their opposites. Whole numbers and their opposites are called integers.

Negative integers, written with a negative sign ${ }^{-}$) are numbers less than 0 . The number negative 5 is written $\mathbf{- 5}$.

Positive integers, written with or without a positive sign (${ }^{+}$) are numbers greater than 0. The number positive 5 is written ${ }^{+5}$ or 5 .

Zero is an integer that is neither positive nor negative.
Opposite numbers are the same distance from zero but are in opposite directions. Numbers such as $\mathbf{- 5}$ and 5 are opposites because they are both 5 units from 0 .

Write the integer. Include the word positive or negative in your answer.

1. Five units to the right of 0 is \qquad .

Three units to the left of 0 is \qquad -.
2. \qquad is written ${ }^{-7}$. \qquad is written +10 or $\mathbf{1 0}$.
3. Two units to the right of -3 is \qquad ..

Eight units to the left of $\mathbf{3}$ is \qquad
4. Seven units to the left of -6 is \qquad . Nine units to the right of $\mathbf{- 2}$ is \qquad -.

Write Yes if the number is an integer. Write No if it is not.
5. 360 \qquad
6. 16 \qquad
7. -0.3 \qquad
8. $-17 \frac{2}{5}$ \qquad
$-1,400$ \qquad
5.8 \qquad
9.6 \qquad
$\frac{5}{2}$
$4 \frac{1}{2}$ \qquad
-6.58 \qquad
$-1,101$ \qquad
-6.25 \qquad

Write the opposite of the integer.
9. 8 \qquad -7
-515 \qquad

365 \qquad

0 \qquad -11 \qquad
-10 \qquad

160 \qquad
-99 \qquad

1,200 \qquad

Integers have many applications. Temperatures can rise or fall. The number of dollars in a bank account can increase or decrease. A height or elevation can be above or below sea level. All these situations can be expressed with integers.

Examples:

A 5° rise in temperature $\rightarrow 5^{\circ}$
A checking account is $\mathbf{\$ 1 0}$ overdrawn $\rightarrow \mathbf{-} \mathbf{1 0}$
A shipwreck 1,300 feet below sea level $\rightarrow \mathbf{- 1 , 3 0 0} \mathrm{ft}$

Model the situation with an integer.
13. $30^{\circ} \mathrm{C}$ above freezing \qquad
14. \$10 earned \qquad
15. 5,280 feet above sea level \qquad
16. The opposite of $50^{\circ} \mathrm{F}$ \qquad

Problem Solving Reasoning
17. Three divers are investigating a shipwreck at the bottom of the ocean. The first diver is waiting on a boat at the surface. The second diver is at 10 m below sea level. The third diver is 6 m below the second. Use integers to describe the position of each diver.
\qquad
19. What number is its own opposite?
\qquad
21. What is the sum of x and the opposite of x ? \qquad

A boat at sea level \qquad
\$35 in debt \qquad
A kite 40 meters up \qquad
A gain of 4 yards \qquad
18. Marcus keeps a record of the money he has in his checking account. In January he wrote checks totaling $\$ \mathbf{4 5}$. In February he made a deposit of $\$ \mathbf{1 0 0}$. In March he did not deposit any money nor did he write any checks. Use integers to describe each month's activity in the account.
20. What is the opposite of the opposite of 5 ?
22. What is the difference between ${ }^{-} x$ and
its opposite? \qquad

Test Prep \star Mixed Review

23 What is the value of $(x+7)^{2}$ when $x=4$?
A 11
B 22
C 53
D 121

24 The circumference of a circle is $\mathbf{2 2}$ feet. About how long is its diameter?

F 7 ft
G 9 ft
H 11 ft
J 13 ft
\qquad

To compare two integers, you can think of how the integers are ordered on the number line. A lesser number is to the left of a greater number. A greater number is to the right of a lesser number.

-7 is less than 1
0 is greater than - 4

Write < or >.
1.

5

-3

-9

2. $8 \bigcirc-5$
-8

8

5

3. -16
 16
0

-18

4

4.

-9

-4

4

2

5. $\quad 1 \bigcirc 6$

6

6.

1

3
3

$0 \bigcirc-4$
$-10 \bigcirc 3$

On the number line, graph the integer described.
7. the integer $\mathbf{1}$ less than $\mathbf{8}$

8. the integer 1 more than 8

9. the integer 6 less than $\mathbf{- 2}$

10. the integer 2 more than -8

11. the integer $\mathbf{4}$ more than -4

12. the integer 5 less than 3

Any number that can be written in the form $\frac{a}{b}$, wheren \mathfrak{a} annd \boldsymbol{b} are integers and \boldsymbol{b} is not zero, is a rational number. You can think of a rational number as a ratio. Every rational number occupies exactly one point on a number line.

Examples of rational numbers include $\frac{1}{2},-\frac{1}{5}, 2 \frac{1}{4}$, and -0.75 .

Write $>,<$, or $=$.
13. $-3 \frac{1}{2}$

0.5

0

14.

15.

-1
 3.7

$-.6 \bigcirc-\frac{2}{3}$
0.001

$1 \bigcirc \frac{4}{3}$
15. 2

$-8 \frac{3}{5}$

Problem Solving

 Reasoning16. Maria, Miranda, and Steven have the same grade average. For missing homework, Mr. Gicale deducted 2 points from Maria's average, 5 points from Miranda's average, and $1 \frac{1}{2}$ points from Steven's average. Who ended up with the highest average?

Explain. \qquad
18. The following temperatures were recorded in 5 different places around the world on the same day in January: ${ }^{-2}{ }^{\circ} \mathrm{C}$, $10^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C},-1.5^{\circ} \mathrm{C}$, and $22^{\circ} \mathrm{C}$. Which temperature is closest to $0^{\circ} \mathrm{C}$? Explain.
17. One night in February, the temperature dropped $1^{\circ} \mathrm{C}$ every hour from 8 P.M. to 8 A.M. At 8 A.m. it was $-15^{\circ} \mathrm{C}$. Was the temperature at 8 P.M. the night before above or below $0^{\circ} \mathrm{C}$? Explain.
\qquad
\qquad
19. A gain of $\$ 4$ followed by a loss of $\$ 5$ is the same as a gain or loss of what?
\qquad
\qquad

Test Prep \star Mixed Review

(21) Billy Joe had 96 CDs. Country and western artists recorded $\frac{11}{12}$ of them. How many CDs is that?
A 8
C 84
B 12
D 88

21 A rectangular prism measures 4 feet by 2 feet by 6 inches. What is its surface area?
F $11 \mathrm{ft}^{2}$
H $44 \mathrm{ft}^{2}$
G $22 \mathrm{ft}^{2}$
J $88 \mathrm{ft}^{2}$

Suppose that Jim's house is located at $\mathbf{0}$ on a number line and that he left home and walked 3 blocks in a positive direction to his friend's house. Then he walked 8 blocks in a negative or opposite direction to the grocery store. Where is the grocery store located on the number line?

Complete the sentence by writing an integer. Use the number line above.

1. If you start at 0 , then go 5 blocks in the positive direction, you end at \qquad
2. If you start at 2 , then go 5 blocks in the positive direction, you end at \qquad .
3. If you start at $\mathbf{- 2}$, then go $\mathbf{5}$ blocks in the positive direction, you end at \qquad .
4. If you start at 0 , then go 3 blocks in the negative direction, you end at \qquad
5. If you start at 2 , then go 3 blocks in the negative direction, you end at \qquad
6. If you start at $\mathbf{- 2}$, then go $\mathbf{3}$ blocks in the negative direction, you end at \qquad
7. If you start at $\mathbf{- 5}$, then go 5 blocks in the positive direction, you end at \qquad .
8. If you start at 3, then go 8 blocks in the negative direction, you end at \qquad -.

Let a positive number represent a trip in the positive direction and a negative number represent a trip in the negative direction. Complete by writing an integer.
9. Start at 0 and take a 4 trip. You end at \qquad .
10. Start at 3 and take a 4 trip. You end at \qquad .
11. Start at -3 and take a 4 trip. You end at \qquad .
12. Start at 0 and take a - 4 trip. You end at \qquad .
13. Start at 3 and take a -4 trip. You end at \qquad .
14. Start at $\mathbf{- 3}$ and take a -4 trip. You end at \qquad
15. Start at 6 and take a $\mathbf{- 5}$ trip. You end at \qquad .
16. Start at $\mathbf{- 1}$ and take 6 trip. You end at \qquad .

You can use a number line to add two integers.

$$
-5+3=?
$$

Start at $\mathbf{- 5}$. Then move 3 units in the positive direction.

$$
-5+3=-2
$$

The sum of $\mathbf{- 5}$ and $\mathbf{3}$ is $\mathbf{- 2}$.

Add. Use the number line to help you.
17. $-7+6=$ \qquad

18. $-4+-1=$ \qquad

19. $5+-8=$ \qquad

20. $6+-1=$ \qquad

Add.
21. $-5+8=$ \qquad
$9+5=$ \qquad
$6+-6=$ \qquad $6+7=$ \qquad
22. $5+-5=$ \qquad
$7+-9=$ \qquad
$9+-8=$ \qquad $-8+6=$ \qquad
23. $-7+7=$ \qquad
$-7+-8=$ \qquad
$2+9=$ \qquad $5+6=$ \qquad
24. $-4+7=$ \qquad
$-8+-7=$ \qquad
$8+-9=$ \qquad
$9+9=$ \qquad
25. $-7+-5=$ \qquad
$8+8=$ \qquad
$-4+-9=$ \qquad
$-9+6=$ \qquad
26. $9+7=$ \qquad
$6+-9=$ \qquad
$-4+-8=$ \qquad
$-7+0=$ \qquad

Write the missing addend.
27. -4 + \qquad $=2$
$-3+$ \qquad $=-5$ \qquad $5+$ \qquad $=0$
28. $-7+$ \qquad $=-4$
$6+\square=6$
$7+$ \qquad $=9$
$-8+$ \qquad $=0$
29. $8+$ \qquad $=7$

0 + \qquad $=-6$
$-9+$ \qquad $=1$
$-1+$ \qquad $=1$
30. $1+$ \qquad $=-7$
$8+$ \qquad $=5$
$1+$ \qquad $=-8$
-2 + \qquad $=9$
31. $-9+$ \qquad $=0$
$9+$ \qquad $=-4$ \qquad = 1
$-6+$ \qquad $=8$
32. $-4+$ \qquad $=-1$
$3+$ \qquad $=0$
$-6+$ \qquad $=-3$
$-12+$ \qquad $=-15$
$5+$ \qquad $=2$
33. $14+$ \qquad $=2$
$-3+$ \qquad $=6$
$8+$ \qquad $=-8$
34. $-7+$ \qquad $=-4$
$-6+$ \qquad $=-20$
$1+$ \qquad $=7$
$10+$ \qquad $=5$
35. $12+$ \qquad $=10$
$-10+$ \qquad $=-2$
-2 + \qquad $=12$
$7+$ \qquad $=-9$

Problem Solving Solve. Reasoning
36. Will the sum of two negative integers be negative or positive? Explain.
37. How can you tell if the sum of a positive integer and a negative integer will be positive or negative? \qquad

Write the opposite of the integer.
38. 7 \qquad 39. - 16 \qquad 40. 0 \qquad
Write the greatest integer of the three given.
41. $-6,-2,0$ \qquad 42. $-5,-3,-1$ \qquad 43. $2,1,-5$ \qquad
Write the sum of the integers.
44. $-5+-4$ \qquad 46. $-16+7$ \qquad
45. $12+-6$ \qquad

You know how to subtract whole numbers by finding a missing addend.

This number is the sum of these numbers.

$$
\begin{aligned}
& 9=3+\square \\
& 9=3+6
\end{aligned}
$$

What number added

So, $9-3=6$
You can also subtract integers by finding a missing addend.

This number is the sum of these numbers.

$$
\begin{aligned}
& -8=2+? \\
& -8=2+-10
\end{aligned}
$$

So, $-8-2=-10$

Subtract. (Hint: Find the missing addend.)

1. $7--2=$ \qquad

$$
-9-5=
$$ $-3-7=$

2. $5-2=$ \qquad
$1--5=$ \qquad
$6-9=$ \qquad
3. $-4-7=$ \qquad
$0--5=$ \qquad
$12--8=$ \qquad
4. $15--4=$ \qquad
$12-8=$ \qquad
$-19-7=$ \qquad
5. $-9-3=$ \qquad
$7--6=$ \qquad

$$
12-7=
$$

\qquad
6. $8-17=$ \qquad

$$
-16--3=
$$

\qquad

$$
-9--9=
$$

\qquad
7. $9--4=$ \qquad
$-9-1=$ \qquad
$-22--11=$ \qquad
8. $13-24=$ \qquad $7-7=$ \qquad $-7-7=$ \qquad
9. $0-26=$ \qquad $0-20=$ \qquad $-5-10=$ \qquad
10. $-5--10=$ \qquad
$0--12=$ \qquad
$-6-0=$ \qquad
11. $10-10=$ \qquad
$-15--15=$ \qquad
\qquad
274 Unit 10 Lesson 4

Name \qquad

Addition and subtraction of the same quantity are inverse operations.
Every subtraction sentence is related to an addition sentence.
Notice how each pair of sentences are related:
$6-2=4$
$-7-2=-9$
$3--4=7$
$6+-2=4$
$-7+-2=-9$
$3+4=7$

Complete each pair of related sentences.
12. $5--2=$
$5+2=$ \qquad
13. $8--6=$ \qquad
$8+6=$ \qquad
14. $-12--5=$ \qquad

$$
-12+5=
$$

15. $-5-7=$

$$
8-8=
$$

$10--3=$ \qquad

$$
-4-7=
$$

$7-6=$ \qquad
$7+-6=$ \qquad
$-9-3=$ \qquad
$-6--5=$ \qquad
$-9+-3=$ \qquad $-6+5=$
\qquad
$-12-8=$ \qquad
$9-6=$ \qquad
$-12+-8=$ \qquad
$9+-6=$
\qquad
\qquad
15. $-5-7$
\qquad

$$
8+-8=
$$

$10+3=$ \qquad
16. $-3-4=$ \qquad
$-7--6=$ \qquad
$-7+6=$ \qquad
$5-2=$ \qquad $-3+-4=$
$5+-2=$ \qquad

Use the related sentences in exercises 12-13 to help you complete the statement.
17. The opposite of $-\mathbf{2}$ is \qquad Subtracting - $\mathbf{2}$ is the same as adding \qquad
18. The opposite of 7 is \qquad Subtracting 7 is the same as adding \qquad
19. Subtracting 6 is the same as adding \qquad .
20. Subtracting -6 is the same as adding \qquad —.
21. Subtracting 3 is the same as adding \qquad
22. Subtracting -5 is the same as adding \qquad .
23. Subtracting 0 is the same as adding \qquad .
24. Subtracting 50 is the same as adding \qquad .

Subtracting any integer is the same as adding the opposite of the integer.
$7-\mathbf{- 3}=10$

$4-8=-4$
$-9+-3$

Subtract.
25. $4--5=$ \qquad

26. $0-9=$ \qquad

27. $6--4=$ \qquad
28. $2-8=$ \qquad
29. $3--9=$ \qquad
30. $5--6=$ \qquad
31. $6--8=$ \qquad
32. $-7-1=$ \qquad

$$
-3--7=
$$

$-8--7=$ \qquad
$10--6=$ \qquad

$7-5=$ \qquad

$9-2=$ \qquad
$8--3=$ \qquad
$-5--9=$ \qquad
$-9-7=$ \qquad
$3-4=$ \qquad
$5-2=$ \qquad
$0--5=$ \qquad

Problem Solving
Solve.
Reasoning
33. At 6 A.M. the temperature was -6°. Between 6:00 A.m. and 3:00 p.м., the temperature rose 11 degrees. Between 3:00 p.M. and midnight, the temperature fell 7 degrees. Write a number sentence that shows how to find the temperature at midnight. Then write the midnight temperature. \qquad

Test Prep \star Mixed Review

34 A book has 320 pages of text. It also has an additional 16 pages of photographs. What is the ratio of text pages to photo pages in simplest terms?
A 320 to 16
C 80 to 4
B 160 to 8
D 20 to 1

Positive and negative integers are used to represent elevation, temperature, financial matters, and many other things.

In this lesson, you will have to decide whether to use addition or subtraction when solving problems with integers.

Tips to Remember:

$\begin{array}{lll}\text { 1. Understand } & \text { 2. Decide } & \text { 3. Solve } \text { 4. Look back }\end{array}$

- Reread the problem. Circle important words and numbers.
- Find the action in the problem. Which operation shows this action better: addition or subtraction?
- Predict the answer. Then solve the problem. Compare your answer with your prediction.

Solve.

1. The temperature at midnight was $-2^{\circ} \mathrm{F}$. Twelve hours later the temperature had increased by 5°. What was the temperature at noon?

Think: What does the word "increase" indicate? What number sentence can you use to solve the problem?

Answer

3. The temperature on the shore has been dropping $3^{\circ} \mathrm{F}$ per hour since 5:00 P.M. It is now 9:00 p.m. How has the temperature changed?

Think: Why don't you need to know the temperature to answer the question?

Answer \qquad
2. The high temperature one day was $3^{\circ} \mathrm{C}$ and the low temperature for the day was $7^{\circ} \mathrm{C}$. What was the change in temperature for the day?

Think: What does the word "change" indicate? What number sentence can you use to solve the problem?

Answer

\qquad
4. The temperature was $60^{\circ} \mathrm{F}$ at 5:00 A.m. By noon it was $88^{\circ} \mathrm{F}$. Suppose the temperature increases by the same number of degrees each hour. How many degrees per hour did the temperature increase?

Think: Are you looking the total amount of change in this problem?

Answer

Solve.
5. The highest point on the continent of Africa, Mt. Kilimanjaro, is $5,895 \mathrm{~m}$ above sea level. The lowest surface point, Lake Assal, is $\mathbf{- 1 5 6 ~ m}$, or 156 m below sea level. How much higher is Mt. Kilimanjaro than Lake Assal?
7. The highest recorded air temperature of $58^{\circ} \mathrm{C}$ was in Al-Aziziyah, Libya. The lowest recorded air temperature of $-89^{\circ} \mathrm{C}$ was in Vostok Station, Antarctica. What is the difference between these two temperatures?
9. A stock opened the week at a price of $\$ 51$. The changes in the closing value of the stock for the next five days were ${ }^{-1}$, +3, -4, -2, +1. What was the closing price of the stock at the end of the week?
11. In central Asia, the winter temperature ranges from $-6^{\circ} \mathrm{C}$ to $-16^{\circ} \mathrm{C}$. What is the range in temperature for the winter?

Extend Your Thinking

13. Look back at problem 6. The lowest surface point of the Caspian Sea in Europe is halfway between the lowest surface points of Lake Eyre and the Valdes Peninsula. What is the lowest surface point of the Caspian Sea?
14. Look back at problem 5. Explain how you found your answer.
15. The lowest surface point in South America is on the Valdes Peninsula at $\mathbf{- 4 0} \mathrm{m}$. The lowest point of Lake Eyre in Australia is 24 m higher than the Valdes Peninsula. How low is the lowest point of Lake Eyre?
16. The greatest depth of Lake Huron is 229 m . The greatest depth of Lake Michigan is 52 m deeper than Lake Huron. What is the greatest depth of Lake Michigan?
\qquad
17. The lowest surface point in North America is in Death Valley, at $\mathbf{- 2 8 0} \mathrm{ft}$ below sea level. Denver, Colorado, referred to as the Mile High City, is $\mathbf{5 , 2 8 0} \mathrm{ft}$ above sea level. How much higher is Denver than Death Valley?
18. A scuba diver is $\mathbf{4}$ meters below sea level. He descends 5 more meters. How far below sea level is he?
19. Look back at problem 8. The greatest depth of Lake Superior is 104 m less than the sum of the greatest depths of Lake Huron and Lake Michigan. What is the greatest depth of Lake Superior? Which lake has the greatest depth?
20. Look back at problem 7. Explain how you found your answer.

Multiplication is repeated addition.
Knowing that multiplication is repeated addition can help you find the product of integers.

$$
3 \times 5=5+5+5, \text { or } 15
$$

$$
3 \times-5=-5+-5+-5, \text { or }-15
$$

A number line can also be used to find the product 3×-5.

Multiplication with integers is a commutative $3 \times-5=-5 \times 3$ operation.

The product of two numbers with different signs is negative.
positive \times negative $=$ negative
$3 \times-5=-15$
negative \times positive $=$ negative $\quad-5 \times 3=-15$

Write the addition problem as a multiplication problem. Then solve.

1. $3+3+3+3$
$-4+-4+-4+-4+-4+-4$ \qquad
2. $-6+-6+-6+-6+-6$ \qquad $1+1+1+1+1+1+1$ \qquad

Find the product.
3. $-2 \times 8=$ \qquad
4. $9 \times-2=$ \qquad
5. $9 \times-9=$ \qquad
6. $13 \times-4=$ \qquad
\qquad
$6 \times-6=$
$-8 \times 4=$
$20 \times-8=$
\qquad
$-3 \times 9=$ \qquad
$10 \times-11=$ \qquad
$-51 \times 7=$ \qquad

Complete the pattern.

$$
\text { 7. } \begin{aligned}
3 \times 1 & = \\
2 \times 1 & = \\
1 \times 1 & = \\
0 \times 1 & = \\
-1 \times 1 & = \\
-2 \times 1 & = \\
-3 \times 1 & =
\end{aligned}
$$

8. $3 \times-1=$
$2 \times-1=$ \qquad
$1 \times-1=$ \qquad
$0 \times-1=$ \qquad
$-1 \times-1=$ \qquad
$-2 \times-1=$ \qquad
$-3 \times-1=$ \qquad
! Pe pruyun
posines a pusinu - rojite $\quad 3 \approx 3 \equiv$ Б
nagastina \times Regative \equiv positive $\quad-3 \times-2=\overline{6}$

Write negative or positive. Use the patterns you found in exercises 7 and 8.
9. The product of a positive number and a positive number is a \qquad number.
10. The product of a negative number and a negative number is a \qquad number.
11. The product of a negative number and a positive number is a \qquad number.
12. The product of a positive number and a negative number is a \qquad number.

Find the product.
13. $-2 \times-5=$
14. $-9 \times-5=$ \qquad
15. $-9 \times-9=$ \qquad
16. $13 \times 7=$ \qquad
17. $-3 \times 11=$ \qquad
18. $2 \times-2=$ \qquad
19. $9 \times 8=$ \qquad
20. $-15 \times-4=$ \qquad -
$3 \times 7=$
$-6 \times-6=\square$
$7 \times 4=$
$22 \times 2=$
$7 \times-7=$
$9 \times-6=$
$-8 \times-10=$ \qquad
$12 \times-6=$ \qquad

$$
\begin{aligned}
-4 \times-9 & = \\
-3 \times-9 & = \\
-11 \times-11 & = \\
31 \times 5 & = \\
-4 \times-5 & = \\
-13 \times 6 & = \\
25 \times-4 & = \\
100 \times 5 & =
\end{aligned}
$$

Problem Solving
Solve. Reasoning
21. Suppose the height of a mountain is decreasing at a rate of 3 inches per year. What integer can be used to represent the yearly change in the height of the mountain? \qquad What is the change in height after 9 years? How many years ago was the mountain 10 feet taller than it is now? \qquad

Test Prep * Mixed Review

22. At 8 A.M. one morning, the temperature was $-8^{\circ} \mathrm{F}$. The high temperature for the day was warmer by $10^{\circ} \mathrm{F}$. What was the high temperature?

A ${ }^{-10} 0^{\circ} \mathrm{F}$
B ${ }^{-} 2^{\circ} \mathrm{F}$
C $2^{\circ} \mathrm{F}$
D $10^{\circ} \mathrm{F}$

23 A company is taste-testing a new type of potato chip. Which would be the best population to choose a sample from?

F shoppers at a grocery store
G potato farmers
H kids who like corn chips
J everyone in the United States

Multiplication and division of the same quantity are inverse operations. You can use a related multiplication equation to solve a division problem.

This number is the product of these numbers.

Other examples
$-14 \div 2=?$
$-24 \div-4=$?
Think: $-7 \times 2=-14$, so $-14 \div 2=-7$
Think: $6 \times-4=-24$, so $-24 \div-4=6$

Use related multiplication sentences to help you complete each sentence.

1. $18 \div-2=$
\qquad $x-2=18$
2. $-24 \div-6=$
\qquad
3. $-63 \div 9=$ \qquad \longrightarrow
4. $60 \div 10=$ \qquad $-12 \div 3=$ \qquad

$$
\ldots \times 3=-12
$$

$$
66 \div-11=
$$

$$
\ldots-11=66
$$

$$
-9 \div-3=
$$

\qquad
\qquad
$-15 \div-3=$ \qquad
\qquad

$$
x-3=-15
$$

$56 \div 7=$ \qquad

$$
\times 7=56
$$

$28 \div-4=$ \qquad
$-19 \div-19=$ \qquad
$38 \div-2=$ \qquad
5. $-64 \div-8=$ \qquad $-25 \div 5=$ \qquad
$36 \div-9=$ \qquad

Write positive or negative. Use the related sentences in exercises
1 and 2 to help.
6. A positive integer divided by a positive number is a
\qquad number.
7. A negative number divided by a negative number is a
\qquad number.
8. A negative number divided by a positive number is a
\qquad number.
9. A positive number divided by a negative number is a number.

Follow these rules when dividing integers:
The quotient of two numbers with the same sign is positive.
positive \div positive $=$ positive $\quad 6 \div 2=3$
negative \div negative $=$ positive $\quad-6 \div-2=3$
The quotient of two numbers with different signs is negative.

$$
\begin{array}{ll}
\text { positive } \div \text { negative }=\text { negative } & 6 \div-2=-3 \\
\text { negative } \div \text { positive }=\text { negative } & -6 \div 2=-3
\end{array}
$$

Remember: The rules for dividing integers are similar to the rules for multiplying integers.

Multiplying Integers

The product of two numbers with the same sign is positive.

The product of two numbers with different signs is negative.

Find the quotient.
10. $16 \div-2=$
11. $-24 \div-3=$ \qquad
$-15 \div 3=$ \qquad
$-28 \div-2=$ \qquad
$-21 \div-7=$ \qquad
\qquad
12. $-63 \div 9=$ \qquad
$36 \div-9=$ \qquad
$-50 \div 5=$ \qquad
$35 \div-5=$
$-16 \div-4=$ \qquad

Problem Solving Reasoning

Solve.
13. Which has the greatest quotient: $-25 \div-5 ; 25 \div-5$;
$-25 \div 5$; or $25 \div 5$? Explain. \qquad
\qquad
\qquad

Cuicl: Chect

Find the difference.
14. 4 - 8 \qquad 15. -6--10 \qquad 16. -9-4 \qquad

Find the product or quotient.
17. $4 \cdot(-8)$ \qquad 18. - $12 \cdot 6$ \qquad 19. $(-10)(-15)$ \qquad
20. $\frac{48}{-3}$ \qquad
21. $\frac{-91}{7}$ \qquad 22. $\frac{-120}{-15}$ \qquad
\qquad

When a numerical expression contains more than one operation, simplify the expression by following the order of operations.

1. Complete operations inside parentheses.
2. Simplify exponents.
3. Multiply and divide from left to right.
4. Add and subtract from left to right.

Simplify. $-3+-5(-10--6) \div 2$

$$
\begin{array}{cl}
-3+-5(-10--6) \div 2 & \text { 1. Complete operations inside parentheses. } \\
-3+-5(-4) \div 2 & \text { 2. Multiply and divide from left to right. } \\
-3+20 \div 2 &
\end{array}
$$

$$
-3+10
$$

3. Add and subtract from left to right.

Simplify each pair of expressions.

1. $-2-(8-9)$
-2-8-9 \qquad
2. $33-(15 \div-5)$
$33-15 \div-5$ \qquad
3. $-3 \cdot(4+-1)$ \qquad
$-3 \cdot 4+-1$ \qquad
4. $(3)^{2}$ \qquad
$(-3)^{2}$ \qquad
5. $-6+(4)^{2}$ \qquad
$-6+(-4)^{2}$ \qquad
6. $(2)-(1)^{2}$ \qquad
$(2)(-1)^{2}$ \qquad
$4-(5+-3)$ \qquad
$-1-(-3+-6)$ \qquad

$$
-1--3+-6
$$

\qquad
$24-(-3 \cdot-2)$ \qquad
4-(5--1) \qquad

4-5•-1 \qquad
$-2(-4-6)$ \qquad
$-2(-4)+-6$
$-(3+2)$
$-3+(-2)$ \qquad
$7-(5+9)$ \qquad
$7+(-5)-9$ \qquad
$15 \div(3+2)$
$15 \div 3+2$ \qquad

To evaluate an expression means to substitute given values for variables.

Evaluate ${ }^{-}\left(x^{2}\right)$ for $x=8$.
$-\left(x^{2}\right)$
$-\left(8^{2}\right)$
-64
Evaluate ${ }^{-}(a+3)$ for $a=6$.

$$
\begin{aligned}
& -(a+3) \\
& -(6+3) \\
& -9
\end{aligned}
$$

Evaluate $\left({ }^{-} x\right)^{2}$ for $x=8$
$(-x)^{2}$
$(-8)^{2}$
64
Evaluate $-a+3$ for $a=6$
$-a+3$
$-6+3$
-3

Evaluate the expression.
7. $-\left(x^{2}\right)=\ldots$ for $x=4$
8. $-(y+5)=$ \qquad for $y=4$
9. $(7)(-a)+3=$ \qquad for $a=2$
$(-x)^{2}=$ \qquad for $x=4$
10. $9(-y-6)=$ \qquad for $y=1$
11. $7-x^{2}=$ \qquad for $x=2$
12. $-y^{2}+2$ for $y=2$ \qquad
$-y+3=$ \qquad for $y=4$
10. $9(-y-6)=$
$7-(a+3)=$ \qquad for $\boldsymbol{a}=\mathbf{2}$
13. $8(a-3)$ for $a=-3$ \qquad
$9-b^{2}$ for $b=-1$ \qquad
14. $3+(x-4)$ for $x=2$ \qquad $y^{2}-4$ for $y=-2$ \qquad

Problem Solving

Reasoning
Solve.
15. Which two expressions have the same value for $\boldsymbol{x}=\mathbf{2}$,
${ }^{-}(x-3),\left({ }^{-} x-3\right)$, or ${ }^{-} x-(-3)$? Explain.
\qquad

Test Prep \star Mixed Review

(16) What is $\frac{4}{5}$ of 20 ?

A 15
B 16
C 17
D 18

17 What is the value of $-8 k^{2}$ when $k=-3$?
F -72
G -48
H 48
J 72

You can use the rules for adding and subtracting integers to evaluate an algebraic expression with integer values.

Evaluate $x-y+z$ for $x=-3, y=-8$, and $z=5$.
Substitute -3 for $x,-8$ for y, and 5 for $z . \quad x-y+z=(-3)-(-8)+(5)$
Follow the order of operations to simplify.

$$
\begin{aligned}
x-y+z & =(-3)-(-8)+(5) \\
& =5+(5) \\
& =10
\end{aligned}
$$

You can use the rules for multiplying and dividing integers to evaluate an algebraic expression with integer values.

Evaluate $3 x+(-2 y)(-3 z)$ for $x=-2, y=-1, z=3$.
Substitute - $\mathbf{2}$ for $\boldsymbol{x}, \mathbf{- 1}$ for \boldsymbol{y}, and $\mathbf{3}$ for \boldsymbol{z}. Follow the order of operations to simplify.

$$
\begin{aligned}
3 x+(-2 y)(-3 z) & =3(-2)+(-2)(-1)(-3)(3) \\
& =-6+(-18) \\
& =-24
\end{aligned}
$$

Multiplication and division can be shown in several ways.
$3 x y z \rightarrow 3$ times x times y times z
$3(x+y) \rightarrow 3$ times the sum of x and y
$(-2 y)(-3 x) \rightarrow-2$ times y times -3 times x $\frac{r}{-3} \rightarrow r$ divided by -3

Evaluate for $r=-2, s=4$, and $d=-3$.

1. $r+s+d$
$r-s-d$ \qquad

$$
r+(s+d)
$$

\qquad
2. $r-(s-d)$ \qquad
$r-d-s$ \qquad $r+s-d$ \qquad
3. $r-s+d$ \qquad

$$
r-d+s
$$

$$
r-(s+d)
$$

\qquad

Evaluate for $x=2, y=-1$, and $z=-4$.
4. $3 x y z$ \qquad
$2 x-3 y+z$ \qquad
$-5(x+y)-z$
5. $\frac{x}{2}+y-z$ \qquad
$2 x+y+\frac{z}{-2}$
$z(x-3)$ \qquad
\qquad

Evaluate for $x=4, y=-5$, and $z=-1$.
6. $x-y+z$ \qquad $\frac{x y}{-2}+z$ \qquad
$x y-x z$

$$
x(y-z)
$$ $\frac{-4}{x}-(-2 y)-z$

\qquad
9. $2 x y-3 y$ \qquad
10. $\frac{x y}{(-2 z)}$ \qquad
11. $\frac{-5}{y}-x z$ \qquad
$y(2 x-3)$ \qquad $2 x y-3$ \qquad
$\frac{-4}{z}+(-2 y)$ \qquad
\qquad
8. $\frac{x y z}{5}$ \qquad
\qquad

$$
2(x+y)+\frac{z}{-1}
$$

7. $2 x-(3 y+z)$
$4 x-2(y+z)$ \qquad

$$
\frac{15}{y}+(-3 y z)
$$

12. $\frac{8 z}{x+y}$
$x(2 y-3 z)$ \qquad $\frac{(x-2 y)}{2 z}$ \qquad
13. $2 x y z-x y z$ \qquad $y+z \div \frac{x}{z}$ \qquad

$$
x y z-2 x y z
$$

\qquad
14. $\frac{4 x-4 z}{2 y}$ \qquad
$(3 y+10 z-6 x) \times 0$ \qquad

$$
\frac{x y z}{4}
$$

\qquad

Problem Solving

 Reasoning15. Which expression has the greater value for $a=-1$ and $b=1$: $3 a-2 b$ or 3(a-2b)? Explain.
\qquad
\qquad
16. Which expression has the greater value for $\boldsymbol{a}=\mathbf{- 1}$ and $\boldsymbol{b}=1: 3-(\boldsymbol{a}-\mathbf{2 b})$ or 3-a-2b? Explain.
\qquad
\qquad

Test Prep \star Mixed Review

17 Two number cubes, numbered $1,2,3,4,5$, and 6 , are rolled. What is the probability of rolling two 4's?
A $\frac{1}{36}$
B $\frac{1}{12}$
C $\frac{1}{6}$
D $\frac{1}{3}$

18 One winter evening the temperature decreased by $4^{\circ} F$ for each of the next 8 hours. What measure best indicates the change in temperature during those $\mathbf{8}$ hours?
F $4^{\circ} \mathrm{F}$
G $32^{\circ} \mathrm{F}$
H ${ }^{-} 4^{\circ} \mathrm{F}$
J ${ }^{-3} 2^{\circ} \mathrm{F}$

The addition property of equality allows you to add opposites to solve equations involving integers.

Addition Property of Equality: Adding the same number to each side of an equation results in an equation with the same solution.

Solve: $x+3=-12$
Add the opposite of 3 to each side of the equation.
Simplify.

$$
\begin{aligned}
x+3 & =-12 \\
x+3+(-3) & =-12+(-3) \\
x+0 & =-15 \\
x & =-15
\end{aligned}
$$

Recall that subtracting an integer is the same as adding the opposite of the integer.

You can use this idea to solve equations involving subtraction of integers. Rewrite all subtraction problems as addition problems.

Solve: $\boldsymbol{y}-(-2)=9$
Rewrite subtraction as addition.
Add the opposite of 2 to each side of the equation. Simplify.

$$
7-(-2)=9
$$

means the
$7+(2)=9$ same as

$$
\begin{aligned}
y-(-2) & =9 \\
y+(2) & =9 \\
y+(2)+(-2) & =9+(-2) \\
y+0 & =7 \\
y & =7
\end{aligned}
$$

Solve: $\boldsymbol{y}-9=-3$
Rewrite subtraction as addition.
Add the opposite of $\mathbf{- 9}$ to each side of the equation. Simplify.

$$
\begin{aligned}
y-9 & =-3 \\
y+(-9) & =-3 \\
y+(-9)+(9) & =-3+(9) \\
y+0 & =6 \\
y & =6
\end{aligned}
$$

Complete the steps to find the solution.
1.

$$
\begin{aligned}
x+(-8) & =3 \\
x+(-8)+\left(_\right) & =3+\left(_\right) \\
x+\left(_\right) & =\left(_\right) \\
x & =
\end{aligned}
$$

2. $x+3=-5$
$x+3+(\square)=-5+(\square)$
$x+\left(_\right)=$ \qquad

$$
x=
$$

\qquad
3. $x+(-5)=-2$
$\begin{aligned} x+(-5)+(\square) & =-2+(\square) \\ x+(\square) & =(\square)\end{aligned}$
$x=$ \qquad
4. $x-(-8)=3$
$x+\left(_\right)=3$
$x+\left(_\right)+\left(_\right)=3+\left(_\right)$
$x+\left(_\right)+(-)=-5+\left(_\right)$
$x+(-)=$
$x=$
6. $x-(-5)=-2$
$x+\left(_\right)=-2$
$x+\left(_\right)+\left(_\right)=-2+\left(_\right)$
$x+(-)=$ \qquad
$x=$

Complete the steps to find the solution to each equation.
7.

$$
\begin{aligned}
x-(-1) & =15 \\
x+(1)+\left(_\right) & =15+\left(_\right) \\
x+_ & =- \\
x & =-
\end{aligned}
$$

8. $x+2=-25$
$x+2+\left(_\right)=-25+\left(_\right)$

$$
x+(-)=
$$

$x=$ \qquad
9. $x+(-8)=13$
$x+(-8)+\left(_\right)=13+(-)$
\qquad
$x=$

Solve.
10. $x-8=3$

$$
x=
$$

11. $x-(-8)=-13$

$$
x=
$$

\qquad
$x+(-6)=7$
$x=$ \qquad
$x+9=2$
$x=$ \qquad
$x+(-2)=10$

$$
x=
$$

\qquad
12. $x+(-2)=-10$

$$
x=
$$

\qquad
$x-4=-9$
$x=$ \qquad
$x-(-6)=17$

$$
x=
$$

\qquad
13. $x+20=-20$
$x=$ \qquad
$x-7=-4$
$x=$ \qquad

$$
x+8=-23
$$

$$
x=
$$

\qquad

Problem Solving

Reasoning

14. Claudia wants to solve $x-(-5)=-3$. What should she do first?
$x-(-14)=1$
$x=$ \qquad
\qquad
15. Gordon rewrote $x+(-2)=1$ as $x-(2)=1$. Did he change the solution of the equation? Explain.

Quick Gheck

Evaluate the expression for $x=-3, y=-5$, and $z=-1$.
16. ${ }^{-x}-4$ \qquad 17. $-\left(x^{2}-4\right)$ \qquad 18. $-7 y+5$ \qquad
19. $x^{2}+y^{2}$ \qquad 20. $-3 x+9 z$ \qquad 21. $-2 x+y-8 z$ \qquad

Solve.
22. $-6 x=156$ \qquad 23. $-y=17$ \qquad 24. $k--3=-18$ \qquad

In this lesson, you will write equations to solve word problems.

You will use a variable in the equation to represent what you want to find.

Problem

After 3 ft had been cut from a piece of lumber, there are 9 ft left. How long was the original piece of lumber?

1 Understand As you reread, ask yourself questions.

- What information do you have?

3 ft were cut from a piece of lumber. 9 ft are left.

- What do you need to find?

2 Decide
 Choose a method for solving.

- Try the strategy Write an Equation.

Pick a variable to represent what you need to find.

- What variable did you select?
- Write an equation using the variable.

(3) Solve

Solve the equation.

- Will you add or subtract to solve the equation? \qquad
-What is the solution of the equation? \qquad

(4) Look back Check your answer.

- Answer \qquad
- Could you have written a different equation?

Solve. Use the Write an Equation strategy or any other strategy you have learned.

1. After a football team had a gain of 5 yd , they were on their 27 yd line. On what line were they before the gain?

Think: Did the play start or end at the 27 yd line?

Answer

3. One day the temperature was 15° above the average December temperature. If the temperature on this day was $56^{\circ} \mathrm{F}$, what is the average temperature for December?
4. Marisa is twice as old as Chris. Chris is 4 years older than Keith. If Marisa is 24, how old is Keith?
5. I'm thinking of a number. If I divide it by -7 , the quotient is -9 . What number am I thinking of?
6. Find the next number in this pattern: 11, 7, 3,-1
7. A recipe calls for $\frac{1}{4}$ cup of sugar for a dozen cookies. How much sugar is needed for 6 dozen cookies?
8. Todd earns $\$ 8$ an hour. If he gets paid $1 \frac{1}{2}$ times that on Saturday, how much does he make per hour on Saturday?
9. The range of a set of scores is 29 . If the lowest score is 69 , what is the highest score?

Think: Will you add or subtract to find the range?

Answer

4. Jo borrowed $\$ 18$ from her mother to buy a sweater. Now she owes her mother \$23. How much did she owe her mother before she bought the sweater?
5. If the time in New York City is $1: 15$ p.м. and it is 3 hours earlier in San Diego, what time is it in San Diego?
6. I'm thinking of a number. If I multiply this number by 3 , the product is $\mathbf{- 2 4}$. What number am I thinking of?
7. The sum of two numbers is $\mathbf{- 1 2}$. One number is 2 more than the other. Find the lesser number.
8. Emma invited $\frac{1}{2}$ of her 24 classmates and $\frac{1}{3}$ of her 6 cousins to a party. How many people did she invite?
9. One gallon of paint covers 18 square yards. How many gallons are needed to cover 54 square yards?
\qquad

Compare. Write $>$, <, or $=$.

1. $\frac{5}{3} \bigcirc 2$
2. $-3 \frac{1}{2} \bigcirc 0$
3. $\frac{-2}{10} \bigcirc \frac{-1}{5}$
4. $3 \bigcirc \frac{-3}{1}$
5. On the number line below, plot point A at -4 , point B at $\frac{-3}{2}$, and point C at $\frac{-1}{2}$.

Add, subtract, multiply, or divide.
6. $-2+5$ \qquad 7. $-8-(-8)$ \qquad 8. $8 \cdot(-6)$
9. $-12 \div-3$

Simplify each expression.
10. $-18-6 \div 3$ \qquad
11. $-5+(-2)^{2}$ \qquad
12. $4-6 \cdot 2$ \qquad

Solve for \boldsymbol{n}.
13. $n-3=-9$
14. $n+(-7)=11$
15. $n-(-4)=9$
$n=$ \qquad
$n=$ \qquad

Solve.

16. The temperature was $-4^{\circ} \mathrm{C}$ two hours ago. Since that time, it decreased $3^{\circ} \mathrm{C}$. To find the temperature now, would you add or subtract? Explain.
17. Marc is 8 years younger than his brother Richard. The sum of their ages is $\mathbf{2 2}$ years. What equation could be used to find Marc's age? How old is Marc?

Use the diagram below for exercises 1-3.

(1) Which angle is congruent to $\angle E C D$?
A $\angle E C B$
C $\angle C B A$
B $\angle B C A$
D $\angle B A C$

2 If $\triangle A B C \cong \triangle E D C$, which segment is congruent to $\overline{D E}$?
F $\overline{A B}$
H $\overline{A C}$
G $\overline{B C}$
J $\overline{C D}$

3 If $\angle B A C=52^{\circ}$ and $\angle A B C=90^{\circ}$, what is the measure of $\angle B C A$?
A 218°
C 48°
B 52°
D 38°
(4) If $\frac{n}{21}=\frac{7}{14}$, what does n equal?
F $\frac{1}{2}$
H $9 \frac{1}{2}$
G 7
J $10 \frac{1}{2}$
(5) What is the least common multiple of 6 and 9?
A 12
C 24
B 18
D 54

6 There is a 35% probability that each student at Jackson Middle School plays a musical instrument. About how many of the $\mathbf{2 4 0}$ sixthgrade students at the school would you expect play an instrument?
F About 6
H About 100
G About 80
J About 120
(7) What is the value of $-g^{2}$ when $g=-5$?
A -10
C -25
E NH
B 10
D 25

8 What is the solution of the equation $\frac{k}{-6}=-9$?
F - 54
H $-1 \frac{1}{2}$
K NH
G 54
J $1 \frac{1}{2}$
(9) A rectangular prism has sides $2 x, 3 x$, and $4 x$. Which equation gives the volume of the prism?

A $V=(2 \cdot 3 \cdot 4) x$
B $V=(2 \cdot 3 \cdot 4) x^{2}$
C $V=(2 \cdot 3 \cdot 4) x^{3}$
D $V=(2+3+4) x$
E NH
(10) $\frac{2}{3} \times \frac{6}{5}=$?
F $\frac{12}{8}$
H $\frac{8}{15}$
K $\frac{4}{5}$
G $\frac{18}{10}$
J $\frac{12}{5}$
UNIT 11 - TABLE OF CONTENTS
Coordinate Graphing and Rational Numbers
Lesson Page
1 Graphing in the Coordinate Plane 295
2 Equations with Two Variables 297
3 Graphing Equations 300
4 Problem Solving Application: Using a Graph 303
5 Rational Numbers 305
6 Algebra: Rational Numbers and Their Properties 307
7 Algebra: Rational Numbers and Expressions 309
8 Problem Solving Strategy: Find a Pattern 311

- Unit 11 Review 313
- Cumulative Review \star Test Prep 314
End of Book Materials
Tables of Metric and Customary Measures 315
Tables of Other Measures and Formulas 316
Table of Symbols and Equivalent Fractions and Percents 317
Glossary 318
Index 324

Dear Family,

During the next few weeks, our math class will be learning about rational numbers and coordinate graphing. You can expect to see homework that provides practice with evaluating rational expressions. Here is a sample you may want to keep handy to give help if needed.

Rational Numbers and Expressions

To evaluate an expression means to substitute given numbers into the expression, then simplify.
Example: Evaluate $\frac{4 a^{2}}{8}+\frac{3}{b^{3}}+\frac{2}{2 c}$ when $a=\frac{1}{2}, b=2$, and $c=4$.

$$
\begin{array}{ll}
\frac{4 a^{2}}{8}+\frac{3}{b^{3}}+\frac{2}{2 c} & \text { 1. Write the expression. } \\
\frac{4\left(\frac{1}{2}\right)^{2}}{8}+\frac{3}{(2)^{3}}+\frac{2}{2(4)} & \text { 2. Substitute for } a, b, a
\end{array}
$$

$$
\frac{4\left(\frac{1}{4}\right)}{8}+\frac{3}{8}+\frac{2}{8}
$$

3. Follow the order of operations. Simplify exponents.

$$
\frac{1}{8}+\frac{3}{8}+\frac{2}{8}
$$

4. Multiply and divide from left to right.

$$
\frac{6}{8}=\frac{3}{4}
$$

5. Add and subtract from left to right. Simplify if possible.

During this unit, students will need to continue practicing adding, subtracting, multiplying, and dividing rational numbers.

This is a coordinate plane. The horizontal number line is the \boldsymbol{x}-axis, and the vertical number line is the \boldsymbol{y}-axis. The point where the axes intersect is the origin. The two axes divide the plane into four quadrants, numbered I, II, III, IV.

The point P shown is the graph of the ordered pair $(-4,3)$. To graph, or plot, point P, begin at the origin and count 4 spaces to the left. Then count up 3 spaces.

The ordered pair $(-4,3)$ gives the coordinates of point P.

Write the coordinates of each point.

1. S \qquad
Q \qquad
R \qquad
T \qquad

Use the graph above. Write the coordinates of each point.
2. A
B
C
D \qquad
E
\qquad
3. G \qquad H \qquad
I \qquad
J \qquad
K \qquad
L \qquad

Use the graph at the right.
In the ordered pair (2,-1),
4. which number tells you the distance from the origin on the horizontal axis? \qquad
5. which number tells the distance from the origin on the vertical axis? \qquad

Graph each ordered pair. Label the point with its letter. Tell in which quadrant or on what axis the point lies.
6. Point $A(3,2)$
7. Point $\boldsymbol{B}(\mathbf{0}, \mathbf{3})$
8. Point C $(2,-4)$ \qquad
9. Point $D(-4,-2)$ \qquad
10. Point $E(4,0)$
11. Point $\boldsymbol{F}(-3,4)$ \qquad
12. Point $G(1,1)$ \qquad
13. Point $H(-1,-1)$ \qquad
14. Point I $(5,-3)$ \qquad
15. Point $J(0,0)$
16. Point $K(-6,0)$ \qquad
17. Point $L(8,6)$ \qquad
18. Point $\boldsymbol{M}(0,-7)$ \qquad

								4	y									
							7											
							7											
							6											
							5											
							3											
							2	2										
																		\underline{x}
	8	6					2-1		01	12	2	3	4	4	5	5		8
							-1											
							2											
							3											
								,										
								\dagger										

19. Point $N(7,7)$ \qquad

Problem Solving

 ReasoningSolve.
20. Gregory drew a square on a coordinate plane. One vertex is at $(0,0)$, another is at $(5,0)$ and another is at $(5,5)$. Where is the fourth vertex?
21. Carina graphed a rectangle, then added 5 to the y-coordinate and graphed a second rectangle. How far is the second rectangle from the first?

Test Prep \boldsymbol{x} Mixed Review

22 Which numbers are listed from least to greatest?
A $-5,-3,-1,1$
B $-5,-3,1,-1$
C 1, ${ }^{-1},-3,-5$
D $-1,1,-3,-5$

23 Which product is the prime factorization of 54?

F $6 \cdot 9$
G $2 \cdot 27$
H $2 \cdot 3 \cdot 9$
J $2 \cdot 3^{3}$

You learned that the solution of an equation with a variable is a value that you can substitute for the variable that makes the sentence true. You can find the solution of an equation by using an inverse operation or by using mental math.

$$
\text { Inverse Operation: } \begin{aligned}
x+4 & =13 \\
x+4-4 & =13-4 \\
x & =9
\end{aligned} \quad \text { Mental Math: } \begin{aligned}
x+4 & =13 \\
x & =9
\end{aligned}
$$

The solution of an equation with two variables is the set of all ordered pairs that make the sentence true. It is helpful to organize a few of the ordered pairs in a table of values. The set of numbers that the variables may represent is the replacement set. The replacement set for the equation

Think: below will be the set of whole numbers.

Create a table of values for the equation $x+y=5$.
Table of Values
$x+y=5$

Complete the table of values.

1. $x+y=8$

x	y
4	
	5
6	
7	
	8
	3

$y=x-5$

x	y
6	
5	
7	
	5
	4
	3

$y=2 x \quad$| x | y |
| :---: | :---: |
| 0 | |
| | 2 |
| | 4 |
| 3 | |
| 4 | |
| | 10 |

You can also use the set of integers as the replacement set for an equation. This will give ordered pairs in all quadrants.

Table of values

$$
x+y=9
$$

Create a table of values for the equation $x+y=9$

ble of values for the equation $x+$	x	y
$4+5=9$, so $x=4$ and $y=5$	4	5
$-1+10=9$, so $x=-1$ and $y=10$	-1	10
$-6+15=9$, so $x=-6$ and $y=15$	-6	15
$-3+12=9$, so $x=-3$ and $y=12$	-3	12
$12+-3=9$, so $x=12$ and $y=-3$	12	-3
$3+6=9$, so $x=3$ and $y=6$	3	6

Complete each table of values using the set of integers as the replacement set.
2. $x+y=10$

x	y
1	
3	
	12
-3	
	15

$x+y=7$

$x+y=0$

x	y
3	
0	
	1
-3	
	5

3. $y=x+3$

x	y
1	
0	
	2
	1
-6	

$y=x-2$

x	y
5	
2	
	-4
	-5
-7	

$x-y=0$

4. $=3 x$

x	y
1	
	0
	-3
-2	
-4	

$y=-x$

x	y
	-6
0	
	5
	2
	1

$y=-3 x$

x	y
	-3
	3
2	
-3	
	15

Complete each table of values using the set of fractions or mixed numbers as the replacement set.
5. $x+y=10$

x	y
$4 \frac{1}{2}$	
$3 \frac{1}{3}$	
	$2 \frac{4}{5}$
$8 \frac{1}{6}$	
$\frac{1}{2}$	

$x+y=7$

x	y
$3 \frac{1}{2}$	
	$4 \frac{2}{3}$
$1 \frac{1}{6}$	
$5 \frac{1}{7}$	
	$6 \frac{2}{3}$

$y=\frac{1}{2} x$

x	y
1	
	$1 \frac{1}{2}$
	$1 \frac{2}{3}$
$2 \frac{1}{2}$	
$1 \frac{1}{5}$	

6. $y=x+3$

x	y
$\frac{1}{2}$	
$1 \frac{1}{3}$	
$5 \frac{2}{3}$	
	$3 \frac{1}{6}$
	$3 \frac{2}{3}$

$y=x-2$

x	y
$3 \frac{1}{3}$	
	$3 \frac{1}{6}$
$6 \frac{1}{6}$	
	$\frac{1}{2}$
$3 \frac{1}{5}$	

$y=\frac{2}{3} x$

x	y
	$\frac{2}{3}$
	$\frac{1}{2}$
$1 \frac{1}{2}$	
2	
	2

Problem Solving Reasoning
7. A number increased by another number is 8. Which ordered pairs in the solution set have a difference of 2?
\qquad

Test Prep \star Mixed Review

(9) Which sum and difference are equivalent?

A $5-(-3)$ and $-5+(-3)$
B $5-(-3)$ and $-5+3$
C $5-(-3)$ and $5+(-3)$
D $5-(-3)$ and $5+3$
8. A submarine descended y meters. It was then $\mathbf{9 0 0} \mathrm{m}$ below sea level. If $\boldsymbol{y}=\mathbf{2 0 0}$, how far below sea level was the submarine to start with?

Write an equation with two variables. Then solve.

\longrightarrow

(10) Rebecca is wrapping identical gifts. Each gift uses $3 \frac{1}{3}$ feet of ribbon. The roll of ribbon is 25 feet long. What is the greatest number of gifts she can wrap with the ribbon?

F 5
G 7
H 8
J 9

You can use a table of values to graph an equation.

1. To graph the equation $\boldsymbol{y}=\boldsymbol{x}+2$, first make a table of values. List three or four values for \boldsymbol{x}. Choose easy numbers to work with such as $\mathbf{0}, 1$, and $\mathbf{- 1}$.
2. Use the table of values to form three or four ordered pairs.

$$
y=x+2
$$

$$
\begin{array}{|r|r|}
\hline x & y \\
\hline 0 & 2 \\
\hline 1 & 3 \\
\hline-1 & \rightarrow(0,2) \\
\hline-2 & \rightarrow(1,3) \\
\hline & \rightarrow(-1,1) \\
\hline & \rightarrow(-2,0) \\
\hline
\end{array}
$$

3. Plot the point for each pair of (x, y) values on a coordinate plane.
4. Draw a line through the points. This line represents all the ordered pairs you could have as solutions to the equation. This includes all fractional values for either x or y.

Complete the table of values and graph the equation.

1. Graph the equation $y=x-3$.

\boldsymbol{x}	\boldsymbol{y}
-1	
0	
1	
2	

2. Graph the equation $y=-2 x$.

$y=-2 x$		
x	y	
-1		$\rightarrow(-1, \ldots)$
0		$\rightarrow(0, \ldots)$
1		$\rightarrow(1, \ldots)$
2		$\rightarrow(2, \ldots)$

\qquad

Graph the equation.

3. Graph the equation $y=2 x$.

4. Graph the equation $\boldsymbol{y}=3-\boldsymbol{x}$.

5. Graph the equation $y=-1 x$.

$y=-1 x$	
x	y
-1	
0	
1	
2	

6. Graph the equation $\boldsymbol{y}=\boldsymbol{x}+\mathbf{2}$.

x	y
-1	
0	
1	
2	

7. Graph each equation on the coordinate plane. Write the ordered pairs.

$y=x+1$	
x	y
-1	
0	
1	
2	

	$y=x+0$		($-1, \ldots$
	x	y	
($1, \ldots$	-1		
$(0, \square)$	0		(0, 1 \qquad
$(1, \square)$	1		(1,) \qquad
$(2, \square)$	2		($2, \ldots$

$y=x+3$

$(-1, \ldots)$	$y=x+2$	
	x	y
	-1	
($0, \ldots$,	0	
($1, \ldots$	1	
$(2, \ldots$)	2	

(${ }^{-1}$, \qquad
(0 , \qquad
(1, \qquad
($2, \ldots$)

8. Describe any pattern you see. \qquad

d Auick Ohect:

The directions for moving on a coordinate plane starting from (0,0) are given. Write the coordinate for the point at the end of the move.
9. Left 4, up 1
10. Right 3, down 6
11. Left 7, down 2
12. Complete the table of values for the equation $\boldsymbol{y}=\frac{\boldsymbol{x}}{\mathbf{2}}$.
13. Graph the equation $y=\frac{x}{2}$. Use the solutions from the table in exercise 12.

The graph at the right shows the relationship between the number of chirps made by a cricket in one minute and the Fahrenheit temperature. This is the graph of a linear equation. This graph is a straight line.

In this lesson you will use graphs of linear equations to solve problems.

Tips to Remember:

1. Understand
 2. Decide
 3. Solve
 4. Look back

- Try to remember a real-life situation like the one described in the problem. What do you remember that might help you find a solution?
- Compare labels on the graph with the words and numbers in the problem. Find the facts you need from the graph.
- Predict the answer. Then solve the problem. Compare your answer with the prediction.

Use the graph above to solve.

1. If a cricket chirps 40 times in one minute, what is the temperature?

Think: On which axis is the number of chirps?

Answer

3. If a cricket chirps 50 times in one minute, what is the temperature?

Think: How much does the temperature increase when the chirps increase by 10?

Answer \qquad
2. If the temperature is $60^{\circ} \mathrm{F}$, how many times will a cricket chirp in one minute?

Think: On which axis is the temperature?

Answer

\qquad
4. If the temperature is 100°, how many times will a cricket chirp in one minute?

Think: What pattern do you see as the chirps increase by 20?

Answer

Use the grapn petow tu suive.

The graph at the right shows the number of calories in a certain number of crackers.

5. The suggested serving size for this cracker is 5 crackers. How many calories are in a suggested serving?
7. How many calories are in 1 cracker?
9. One week, George had 1 serving of crackers each day. How many calories did he get from these crackers?
\qquad
11. How many calories are in $2 \frac{1}{2}$ crackers?
\qquad

Extend Your Thinking

13. Look back at problem 5. How can you check that the graph shows 12 calories for one cracker?
\qquad
\qquad
14. Look back at problem 7. Explain the method you used to solve the problem.
\qquad
\qquad
\qquad

On this number line, points A and B are between the whole numbers.

If point \boldsymbol{A} is halfway between $\mathbf{0}$ and 1 , then point \boldsymbol{A} represents the fraction $\frac{1}{2}$. The number $\frac{1}{2}$ is not a whole number, but belongs to a set of numbers called the rational numbers. Point B is one-fourth of the distance from 3 to 4.
The rational number represented by point B is $3 \frac{1}{4}$.
A rational number is any number that can be expressed in the form $\frac{\boldsymbol{a}}{\boldsymbol{b}}$, where \boldsymbol{a} and \boldsymbol{b} are integers and \boldsymbol{b} is not $\mathbf{0}$.

The set of rational numbers includes the following:
The set of positive and negative fractions such as $\frac{7}{12}$ and $-\frac{2}{3}$ The set of mixed numbers such as $6 \frac{3}{4}$ and $-1 \frac{1}{2}$, because

$$
6 \frac{3}{4}=\frac{27}{4} \text { and } 1 \frac{1}{2}=\frac{3}{2}
$$

The set of percents such as $12 \frac{1}{2} \%$, because $12 \frac{1}{2} \%=\frac{25}{200}$ or $\frac{1}{8}$
The set of decimals such as 0.13 , because $0.13=\frac{13}{100}$
The set of whole numbers and integers such as 5 and
-7 , because $5=\frac{5}{1}$ and $-7=-\frac{7}{1}$

Write in the form $\frac{a}{b}$.

1. 0.31 \qquad $1 \frac{1}{2}$ \qquad 76\% \qquad 2.5 \qquad $-3 \frac{1}{4}$ \qquad
2. -0.79 \qquad
$3 \frac{1}{2}$ \qquad
20\% \qquad
4.7 \qquad
50\% \qquad

Write the rational numbers on the number line. Then write $>,<$, or $=$.

3. 90% \qquad $\frac{3}{4}$
$2 \frac{1}{2}$ \qquad 2.25
4. 60% \qquad $\frac{1}{2}$
$1 \frac{1}{3}$ - 1.8
3.5
$1 \frac{2}{5}$ \qquad 1.4
4.75 450\%
$2.3-2 \frac{3}{100}$

Which subset of rational numbers would you use in the given situation?
5. To tell the amount of money in your bank account. \qquad
7. To tell your shoe size.
\qquad

Write true or false.
9. Every rational number is an integer. \qquad
11. Every whole number is a rational number.
\qquad
13. Mixed numbers such as $-5 \frac{1}{4}$ are not rational numbers. \qquad
15. Zero is not a rational number. \qquad
17. The square root of 16 is a rational number.
10. Every integer is a rational number. \qquad 16. $\frac{\frac{1}{2}}{\frac{1}{8}}$ is a rational number. \qquad
6. To tell the amount of pepper in a recipe.
\qquad
8. To tell a temperature below 0 .
12. All terminating decimals are rational numbers. \qquad
14. A rational number cannot be a whole number. \qquad
18. Every fraction is a rational number.

Problem Solving

 ReasoningSolve.
19. Can you write all the possible fractions equivalent to $\frac{\mathbf{1}}{\mathbf{2}}$?

Explain. \qquad
20. What is the rational number $\frac{1}{3}$ of the distance from 2 to 4 ? \qquad

Test Prep $*$ Mirred Review

21 Kishor is playing a card game. His scores for the last three hands were $55,-25$ and $\mathbf{- 6 0}$. What was his average score for the three hands?
A $46 \frac{2}{3}$
B 10
C ${ }^{-10}$
D $-46 \frac{2}{3}$
22. Which ordered pairs are solutions of the equation $y=x-5$?
F $(25,0),(24,1)$, and $(23,2)$
G $(5,0),(4,1)$, and $(3,2)$
H $(5,10),(4,9)$, and $(3,8)$
J ($\left.{ }^{-} 5,{ }^{-1} 10\right),\left(-4,{ }^{-9}\right)$, and $(-3,-8)$
\qquad

The properties of whole numbers and integers are also true for rational numbers.

Property	Examples	Using Variables
Commutative Property of Addition	$\frac{1}{2}+\frac{3}{4}=\frac{3}{4}+\frac{1}{2}$	$\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b}$
Commutative Property of Multiplication	$\frac{2}{3} \times \frac{5}{8}=\frac{5}{8} \times \frac{2}{3}$	$\frac{a}{b} \times \frac{c}{d}=\frac{c}{d} \times \frac{a}{b}$
Associative Property of Addition	$\left(\frac{1}{3}+\frac{4}{5}\right)+\frac{1}{5}=\frac{1}{3}+\left(\frac{4}{5}+\frac{1}{5}\right)$	$\left(\frac{a}{b}+\frac{c}{d}\right)+\frac{e}{f}=\frac{a}{b}+\left(\frac{c}{d}+\frac{e}{f}\right)$
Associative Property of Multiplication	$\left(\frac{5}{8} \times \frac{1}{4}\right) \times \frac{1}{2}=\frac{5}{8} \times\left(\frac{1}{4} \times \frac{1}{2}\right)$	$\left(\frac{a}{b} \times \frac{c}{d}\right) \times \frac{e}{f}=\frac{a}{b} \times\left(\frac{c}{d} \times \frac{e}{f}\right)$
Identity Property of Addition	$2 \frac{1}{2}+0=2 \frac{1}{2}$	$\frac{a}{b}+0=\frac{a}{b}$
Identity Property of Multiplication	$3 \frac{3}{4} \times 1=3 \frac{3}{4}$	$\frac{a}{b} \times 1=\frac{a}{b}$
Distributive Property	$2\left(\frac{3}{4}+\frac{1}{2}\right)=2 \times \frac{3}{4}+2 \times \frac{1}{2}$	$a\left(\frac{b}{c}+\frac{d}{e}\right)=\frac{a b}{c}+\frac{a d}{e}$
Zero Property of Multiplication	$4 \frac{5}{8} \times 0=0$	$\frac{a}{b} \times 0=0$

Integers and rational numbers have a property that whole numbers do not have.
Every integer and every rational number has an additive inverse. The additive
inverse is another name for the opposite of a number.
-6 is the additive inverse of 6 , because $-6+6=0$.
$\frac{4}{5}$ is the additive inverse of $-\frac{4}{5}$, because $\frac{4}{5}+\left(-\frac{4}{5}\right)=0$.

Use the properties to write in the missing rational numbers.

1. $\left(\frac{1}{2}+\frac{4}{9}\right)+$ \qquad $=+\left(\ldots+\frac{3}{10}\right)$
$-\frac{4}{5} \times-\frac{2}{3}=$ $\times-\frac{4}{5}$
2. $6 \frac{7}{8} \times=6 \frac{7}{8}$
$-3 \frac{3}{4}+\square=-3 \frac{3}{4}$
$-\frac{3}{2} x$ \qquad $=-\frac{3}{2}$

Write the additive inverse.
3. 7 \qquad

15 \qquad
$-\frac{2}{3}$ \qquad
$\frac{5}{4}$ \qquad $-3 \frac{1}{3}$ \qquad
4. 0 \qquad
$-\frac{4}{9}$
$\frac{17}{6}$ \qquad $5 \frac{1}{7}$ $-10 \frac{2}{5}$ \qquad

The rational numbers have a property that neither the integers nor the whole numbers have. Every rational number, except 0 , has a multiplicative inverse. A multiplicative inverse is another name for a reciprocal.
$\frac{4}{3}$ and $\frac{3}{4}$ are multiplicative inverses, because $\frac{4}{3} \times \frac{3}{4}=1$.

The rational numbers have another property that the integers and the whole numbers do not have. Between any two rational numbers there is another rational number. This is called the density property.

To find a number between any two rational numbers, you can find the arithmetic mean (average) of the two numbers.

Find a number between $\frac{1}{2}$ and $\frac{2}{3}$. $\frac{\frac{1}{2}+\frac{2}{3}}{2}=\frac{\frac{3}{6}+\frac{4}{6}}{2}=\frac{7}{6} \times \frac{1}{2}=\frac{7}{12}$

So, $\frac{1}{2}<\frac{7}{12}<\frac{2}{3}$

Write the multiplicative inverse.
5. $\frac{5}{6}$
$\frac{9}{7}$ \qquad $1 \frac{1}{2}$ \qquad $-2 \frac{1}{3}$ \qquad

Write the arithmetic mean of the pair of numbers.
6. $\frac{1}{4}, \frac{3}{4}$ \qquad $\frac{5}{6}, \frac{1}{2}$
$\frac{1}{3}, \frac{1}{4}$ \qquad $4 \frac{1}{2}, 16 \frac{1}{2}$ \qquad

Find two rational numbers between the pair of numbers.
7. $\frac{2}{3}, \frac{5}{6}$ \qquad $\frac{7}{2}, \frac{8}{3}$ \qquad $\frac{8}{9}, \frac{1}{3}$ \qquad $5 \frac{1}{6}, 5 \frac{7}{18}$
\qquad

Problem Solving

Solve.
Reasoning
8. Amy's house is 7.8 km from school. On the way to school she meets Terry 2.6 km from her house. How much farther do they need to go to get to school?
9. The length of a rectangle is 48.8 cm . It is 1.6 times longer than its width. What is the width of the rectangle?

Test Prep \star Mixed Review

(11) To solve the equation $\frac{3 k}{4}=9$, which operation can be used on each side of the equation?
A Multiply by 9
B Divide by 9
C Multiply by $\frac{3}{4}$
D Multiply by $\frac{4}{3}$

11 What is the solution of the equation $-3 x=12$?
F 36
G 4
H-4
J - 36

You have learned that expressions with variables can be evaluated. You replace the variables with their values.
Then perform the operations.
Evaluate the expression $\boldsymbol{m}+\boldsymbol{w}+\boldsymbol{f}$ when

$$
m=2 \frac{1}{2}, w=4 \frac{1}{3}, \text { and } f=5 \frac{1}{4}
$$

$$
\begin{gathered}
m+w+\underset{\downarrow}{\downarrow}+\underset{\downarrow}{\downarrow}+5 \frac{1}{3}+5 \frac{1}{4} \\
2 \frac{1}{2}+4 \frac{1}{3}
\end{gathered}
$$

$$
2 \frac{6}{12}+4 \frac{4}{12}+5 \frac{3}{12}
$$

$$
11 \frac{13}{12}, \text { or } 12 \frac{1}{12}
$$

Evaluate each expression when $x=3 \frac{1}{4}, y=5 \frac{1}{2}$, and $z=1 \frac{3}{8}$.

1. $x+y+z$

$$
x+2 y-z
$$

$2 x+y+2 z$ \qquad
2. $x+y-z$ \qquad
$4 x+2 y-8 z$
$3 x-y-z$

Evaluate each expression when $a=-\frac{1}{2}, b=2 \frac{1}{2}, c=\frac{2}{3}$.
3. $a+b+c$ \qquad $2 a-b-c$ \qquad $a-a b-2 c$ \qquad
4. $\frac{b}{a}+c$ \qquad
$a^{2}+c$ \qquad
$b^{2}-c^{2}$ \qquad

Evaluate the expression $\frac{x+y+z}{3}$ for the given values.
5. $x=\frac{1}{3}, y=\frac{2}{3}, z=1 \frac{1}{4}$ \qquad

$$
x=-0.25, y=0.75, z=0.25
$$

6. $x=-\frac{4}{5}, y=\frac{3}{2}, z=-2 \frac{1}{2}$ \qquad

$$
x=98, y=84, z=82
$$

\qquad

Which is greater?
7. x^{2} when $x=-\frac{1}{2}$ or $x=\frac{1}{3}$? \qquad
8. $2 x^{2}$ when $x=-\frac{1}{3}$ or $x=-3$? \qquad
9. $\frac{x^{3}}{2}$ when $x=-2$ or $x=2$? \qquad
10. $\frac{x^{3}}{3}$ when $x=-1$ or $x=1$? \qquad

Problem Solving Reasoning
11. Find the perimeter of this rectangle by evaluating the expression $2(w+l)$ for
$w=2 \frac{1}{2}$ and $I=4 \frac{1}{3}$. \qquad

13. The expression to find the area of a rectangle is $\boldsymbol{I \times w}$. How do the areas of two rectangles compare when $I=3 \frac{1}{3}$, $w=2 \frac{1}{2}$ for rectangle A, and when $I=6 \frac{2}{3}$ and $w=1 \frac{1}{4}$ for rectangle B ?
12. Find the perimeter of this equilateral triangle by evaluating the expression $3 s$ for $s=4 \frac{1}{6}$. \qquad

14. The perimeter of a rectangle is 20 in . What is the area of the rectangle if all its sides are congruent?
\qquad

Quich Ohects

Write the rational number as a ratio of two integers.
15. $-2 \frac{3}{4}$ \qquad 16. -1.72 \qquad 17. 0 \qquad

Write a rational number that is between the two rational numbers.
18. 1.002 and 1.003 19. $-1 \frac{7}{8}$ and $-1 \frac{3}{4}$
20. $9 \frac{1}{3}$ and 9.33

Evaluate the expression for $x=\frac{2}{3}$ and $y=-1 \frac{1}{2}$.
21. $-3 x+2 y$
22. $y^{2}-2 x$
23. $3 x^{2}-4 y$

A pattern does not always involve numbers or a series of figures.

In this lesson, you will find patterns on coordinate graphs.

Problem

When you look in the mirror, you see your reflection or mirror image. What are the coordinates of the reflection of $\triangle A B C$ over the y-axis?

1 Understand As you reread, ask yourself questions.
-What facts do you know?
The coordinates of point \boldsymbol{A} are \qquad
The coordinates of point B are \qquad
The coordinates of point C are \qquad

- What do you need to find?
\qquad
\qquad

2 Decide

Choose a method for solving.

- Try the strategy Find a Pattern.

POINT	REFLECTION
$A(1,3)$	A^{\prime}
$B(3,4)$	B^{\prime}
$C(4,1)$	C^{\prime}

(3) Solve

Fill in the coordinates of the reflection image, $\triangle A^{\prime} B^{\prime} C^{\prime}$, in the table.

- What is the relationship between the x-coordinate of each of the points in $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$?
- What is the relationship between the y-coordinate of each of the points in $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$?

State a rule to find the reflection of a figure over the y-axis.

1. What are the coordinates of the reflection of $\triangle D E F$ over the y-axis? Draw the image.
2. A palindrome is a number or word that reads the same in both directions. The number 2,002 is a palindrome. What is the next higher number that is a palindrome?
3. In a survey at Grant Middle School, $\frac{3}{5}$ of the students said they play a sport. If 120 students were surveyed, how many of them play a sport?
4. Find the pattern and complete the table.

Point	Reflection
$(-3,2)$	$(-3,-2)$
$(1,-4)$	$(1,4)$
$(0,3)$	$(0,-3)$
$(-2,-1)$	

2. What are the coordinates of the reflection of $\triangle D E F$ over the x-axis? Draw the image.
\qquad
3. Draw the next figure in this sequence.

4. A taxi ride costs $\$ 2$ for the first mile and $\$.75$ for each additional $\frac{1}{2}$ mile. How much will it cost to go 5 miles?
5. Find the pattern and complete the table.

Point	Reflection
$(2,-5)$	$(-2,5)$
$(-4,2)$	$(4,-2)$
$(-3,-1)$	$(3,1)$
$(1,5)$	

Complete a table of values and write ordered pairs for the given equation. Then graph the equation.

1. $y=x+4$

x	y	Ordered Pairs
		$()$,
		$()$,
		$()$,
		$()$,
		$()$,

Write the letter that names each number on the number line.

2. 1.3 \qquad 3. $2 \frac{1}{8}$
4. $\frac{2}{3}$
5. $-\frac{3}{4}$
6. -0.5

Order each group of numbers from least to greatest.
7. $\frac{1}{3}, \frac{4}{5}, 0.66,0.25$
8. $2.20,3 \frac{1}{2}, 2.50,2 \frac{1}{4}$

Evaluate each expression for $x=\frac{3}{4}, y=\frac{1}{2}$, and $z=4$.
9. $2 x+4 y \cdot \frac{1}{8} z$ \qquad 10. $3 x \div y$

Follow these steps to create a symmetrical design.
11. - Use the \boldsymbol{x}-axis as a line of symmetry and graph the reflection of point R and the reflection of point T. Label the first point B and the second point A.

- Use the \boldsymbol{y}-axis as a line of symmetry and graph the reflection of point R and the reflection of point T, Label these points \boldsymbol{C} and \boldsymbol{D}.
- Use the \boldsymbol{x}-axis as a line of symmetry and graph the reflection of point C and the reflection of point D. Label these points \boldsymbol{F} and \boldsymbol{G}.
- Connect points D, T, A, G and C, R, B, F.

What is the surface area of the triangular prism?

A $300 \mathrm{~cm}^{2}$
C $336 \mathrm{~cm}^{2}$
B $306 \mathrm{~cm}^{2}$
D $440 \mathrm{~cm}^{2}$
(2) Greg read the first $\mathbf{1 1 0}$ pages of a book in $2 \frac{1}{5}$ hours. At this rate, how long will it take him to read all 325 pages?
F 5 hours
H 6 hours
G $5 \frac{1}{2}$ hours
J $6 \frac{1}{2}$ hours
3. A bakery makes a batch of $\mathbf{1 5 0}$ chocolate chip cookies. The table shows the number of chips that are in each cookie.

Number of chips	Number of cookies
10 chips	20 cookies
11 chips	25 cookies
12 chips	25 cookies
13 chips	30 cookies
14 chips	30 cookies
15 chips	20 cookies

What is the probability that a cookie from this batch will have more than 12 chips?
A $\frac{1}{6}$
C $\frac{7}{15}$
B $\frac{3}{10}$
D $\frac{8}{15}$

Which rational number is indicated by the arrow?

$$
\begin{aligned}
& \text { F }-3 \frac{1}{4} \\
& \text { G }-2 \frac{3}{4}
\end{aligned}
$$

(5) Four companies sell their stocks in the same market. The table shows the amount by which the 4 stocks gained (positive) or lost (negative) value during one day.

Company Name	Gain (+) or Loss (-)
ABC Inc.	$2 \frac{3}{8}$
FGH Ltd.	$-2 \frac{1}{8}$
LMN Co.	-2
TUV Assoc.	$-2 \frac{1}{2}$

Which answer choice shows the companies listed from the greatest loss to greatest gain?

A TUV, FGH, LMN, ABC
B LMN, FGH, TUV, ABC
C ABC, LMN, FGH, TUV
D ABC, TUV, FGH, LMN

What is the value of the expression $3-y$ when $y=-4.5$?

$$
\begin{array}{ll}
\text { F } 7.5 & \text { H }-1.5 \\
\text { G } 1.5 & \text { J }
\end{array}
$$

Tables of Measures

Metric System

Prefixes	$=1,000$
kilo (k) hecto (h) $=100$ deka (da) $=10$ deci (d) $=0.1=\frac{1}{10}$ centi (c) $=0.01=\frac{1}{100}$ milli (m) $=0.001=\frac{1}{1,000}$.	

Length

1 kilometer $(\mathrm{km})=1,000$ meters (m)
1 hectometer $(\mathrm{hm})=100$ meters
1 dekameter $(\mathrm{dam})=10$ meters
1 decimeter $(\mathrm{dm})=0.1$ meter
1 centimeter $(\mathrm{cm})=0.01$ meter
1 millimeter $(\mathrm{mm})=0.001$ meter

Capacity

1 kiloliter (kL)	$=1,000$ liters (L)
1 hectoliter (hL)	$=100$ liters
1 dekaliter (daL)	$=10$ liters
1 deciliter (dL)	$=0.1$ liter
1 centiliter (cL)	$=0.01$ liter
1 milliliter (mL)	$=0.001$ liter

Mass

1 kilogram (kg) $=1,000$ grams (g)
1 hectogram (hg) = 100 grams
1 dekagram (dag) $=10$ grams
1 decigram (dg) $=0.1$ gram
1 centigram (cg) $=0.01$ gram
1 milligram (mg) $=0.001$ gram

Area and Volume

1 square $\mathrm{cm}\left(\mathrm{cm}^{2}\right)=100$ square $\mathrm{mm}\left(\mathrm{mm}^{2}\right)$
1 square $\mathrm{km}\left(\mathrm{km}^{2}\right)=10,000$ square $\mathrm{m}\left(\mathrm{m}^{2}\right)$
1 cubic $\mathrm{cm}\left(\mathrm{cm}^{3}\right)=1,000$ cubic $\mathrm{mm}\left(\mathrm{mm}^{3}\right)$
1 cubic $\mathrm{m}\left(\mathrm{m}^{3}\right) \quad=1,000,000$ cubic cm

Customary System

Length

1 foot (ft)	$=12$ inches (in.)
1 yard (yd)	$=3$ feet
1 yard	$=36$ inches
1 mile (mi)	$=5,280$ feet

Capacity

$$
\begin{array}{ll}
1 \text { cup (c) } & =8 \text { fluid ounces (floz) } \\
1 \text { pint (pt) } & =2 \text { cups } \\
1 \text { pint } & =16 \text { fluid ounces } \\
1 \text { quart (qt) } & =2 \text { pints } \\
1 \text { gallon (gal) } & =4 \text { quarts }
\end{array}
$$

Weight

$$
\begin{array}{ll}
1 \text { pound (Ib) } & =16 \text { ounces (oz) } \\
1 \text { ton }(T) & =2,000 \text { pounds }
\end{array}
$$

Area and Volume

1 square foot (ft^{2}) $=144$ square inches (in. ${ }^{2}$)
1 square yard $\left(y d^{2}\right)=9$ square feet
1 acre $(A) \quad=4,840$ square yards
1 square mile $\left(\mathrm{mi}^{2}\right)=640$ acres
1 cubic foot (ft^{3}) $=1,728$ cubic inches (in. ${ }^{3}$)
1 cubic yd (yd ${ }^{3}$) $=27$ cubic feet

Time

1 minute (\min)	$=60$ seconds (s)
1 hour (h)	$=60$ minutes
1 day (d)	$=24$ hours
1 week $(w k)$	$=7$ days
1 month (mo)	≈ 4 weeks
1 year (yr)	$=12$ months
1 year	$=52$ weeks
1 year	$=365$ days
1 leap year	$=366$ days
1 decade	$=10$ years
1 century	$=100$ years

Counting

1 dozen (doz)	$=12$ things
1 score	$=10$ things
1 gross (gro)	$=12$ dozen
1 gross	$=144$ things

Geometric Formulas

Symbols

$=$	is equal to	\%	percent	\}	is perpendicular to	
\#	is not equal to	。	degree	\sim	is similar to	
<	is less than	$\angle A$	angle A	\cong	is congruent to	
>	is greater than	$\overline{A B}$		5^{4}	5 to the fourth	
\approx	is approximately	$\overrightarrow{A B}$	lin		power ($5 \cdot 5 \cdot 5 \cdot 5$)	
	equal to	$\overrightarrow{A B}$	ray $A B$	π	pi	
n, x	variables	$\overleftrightarrow{A B}$		+5	positive 5	
$0 . \overline{37}$	0.37373737 . .	$\stackrel{A B}{ }$	line $A B$	-5	negative 5	
	(repeating decimal)	\triangle	triangle	$P(A)$	the probability of A	
$a: b$	the ratio of a to b	\|		is parallel to		

Equivalent Fractions and Percents

$$
\begin{aligned}
& 50 \%=\frac{1}{2} \\
& 33 \frac{1}{3} \%=\frac{1}{3} \\
& 66 \frac{2}{3} \%=\frac{2}{3} \\
& 25 \%=\frac{1}{4} \\
& 75 \%=\frac{3}{4} \\
& 20 \%=\frac{1}{5} \\
& 40 \%=\frac{2}{5} \\
& 60 \%=\frac{3}{5} \\
& 80 \%=\frac{4}{5} \\
& 16 \frac{2}{3} \%=\frac{1}{6} \\
& 12 \frac{1}{2} \%=\frac{1}{8} \\
& 10 \%=\frac{1}{10} \\
& 30 \%=\frac{3}{10} \\
& 70 \%=\frac{7}{10}
\end{aligned}
$$

$$
\begin{aligned}
90 \% & =\frac{9}{10} \\
5 \% & =\frac{1}{20} \\
4 \% & =\frac{1}{25} \\
2 \frac{1}{2} \% & =\frac{1}{40} \\
2 \% & =\frac{1}{50}
\end{aligned}
$$

A

acute angle An angle whose measure is less than 90°
acute triangle A triangle whose largest angle is an acute angle

addend (see addition)
addition The arithmetic operation that combines two numbers Example: $23 \leftarrow$ addend

$$
\frac{+13}{36} \leftarrow \text { addend }
$$

addition property of equality If two expressions are equal, then adding the same number to each forms two more equal expressions. Example: If $n-7=10$, then $n-7+7=10+7$
algebraic expression An expression that contains variables such as x or n
altitude A segment of a triangle or parallelogram that is perpendicular to the base. In a triangle one endpoint is the vertex opposite the base.

angle A geometric figure formed by two rays with a common end point. The angle shown can be named either $\angle A B C$ or $\angle B$.

area A measure of the number of square units in a region.
associative property of addition Changing the grouping of addends does not change the sum. Example: $(37+95)+5=$ $37+(95+5)=137$
associative property of multiplication Changing the grouping of factors does not change the product.

Example:

$(25 \cdot 5) \cdot 2=27 \cdot(5 \cdot 2)=270$
average A measure of central tendency. It is computed by adding all the items of data and dividing by the number of items.

B

bar graph A pictorial representation of data that uses lengths of bars to show the information

base (of a power) The number that is used as a factor when evaluating powers
Example: $3^{4}=3 \cdot 3 \cdot 3 \cdot 3$. The base is 3 .
base (of a space figure) (see cone, cylinder, prism, pyramid)
bias A property of a sample that allows a characteristic to consistently be over- or underrepresented

C

capacity The maximum amount of liquid that a container can hold center (see circle, sphere)
central angle An angle whose vertex is the center of a circle

central tendency The most representative numbers of a set of data.
certain event $A n$ event that will always occur.
Example: If you toss a coin, it is certain that you will get either heads or tails.
chord A segment joining any two points on a circle

circle A plane figure composed of all of the points the same distance from a given point called the center

circle graph A pictorial representation of data that uses sections of a circle to show the information

circumference The distance around a circle. It is about 3.14 times the diameter.
cluster Several items of data grouped into a small interval
common denominator A denominator common to two or more fractions. Any common multiple of the given denominators can be used to write equivalent fractions. Example: Some common denominators of $\frac{1}{2}$ and $\frac{1}{3}$ are $6,12,18$, 24,
common factor A number that is a factor of two or more whole numbers
Example: 1, 2, 3, and 6 are common factors of 12 and 18.
common multiple A number that is a multiple of two or more whole numbers
Example: Common multiples of 3 and 4 are $12,24,36, \ldots$.
commutative property of addition The order in which you add two numbers does not change the sum. Example: $3+4=4+3=7$
commutative property of multiplication The order in which you multiply two numbers does not change the product.
Example: $3 \cdot 5=5 \cdot 3=15$
compatible numbers Numbers used to make estimates that are easy to work with mentally and are close to the given numbers
complementary angles Two angles whose measures have a sum of 90°

complementary events Two independent events whose probabilities total 1
Example: Rolling a number greater than 2 on a number cube and rolling a number less than or equal to 2.
composite number A number with three or more factors
Example: 9 is composite, because its factors are 1, 3, and 9.
compound event The combination of two or more single events Example: Rolling a "4" on one number cube and then rolling a "6" on another.
cone A space figure with one flat, circular surface and one curved surface

congruent figures Figures that have exactly the same size and shape. In congruent polygons, corresponding angles are congruent and corresponding sides are congruent.

coordinate Each number of an ordered pair
Example: $(4,6)$ has a first coordinate of 4 and a second coordinate of 6 .
coordinate plane A grid with number lines used to locate points in a plane. It is divided into 4 quadrants by its axes.

counting principle The number of possible outcomes of a compound event is equal to the product of the number of possible outcomes of the individual events
cube A rectangular prism whose faces are all congruent squares

customary system of measurement The system of measurement currently used in the United States
cylinder A space figure with two congruent circular bases joined by a single curved surface

D
data Numerical information
decimal A number that uses place value to indicate parts of a whole. The decimal point separates the whole number digits from the digits representing parts of a whole.
Example: The decimal
decimal point $\xrightarrow{3.67}$
represents the number three and 67 hundredths.
decimal point (see decimal)
denominator The numeral below the fraction bar in a fraction. It tells how many parts are in the whole.
dependent events Two or more events such that the outcome of one influences the outcome of the others
Example: Suppose the numbers 1, 2, and 3 are each written on a slip of paper. Choose one number, and without putting it back, choose a second number.
diagonal A segment joining two vertices of a polygon that is not a side

Diagonals:
$\overline{A C}$
$\overline{A D}$
$\overline{B D}$
$\overline{B E}$
$\overline{C E}$

diameter A chord of a circle that contains the center

difference (see subtraction)
digit Any of the symbols used to write numerals. In the base 10 system, they are $1,2,3,4,5,6,7,8$, 9 , and 0 .
distributive property The product of a number and the sum of two numbers is equal to the sum of the two products
Example:
$3 \cdot(2+7)=3 \cdot 2+3 \cdot 7$
dividend (see division)
divisible A number is divisible by another number if it can be divided by that number with no remainder.
Example: 4, 16, and 640 are all divisible by 4.
division An operation that divides a set, region, or number into equal parts.

Example:

quotient $\rightarrow \quad 10$ R5 \leftarrow remainder
divisor $\rightarrow 6 \longdiv { 6 5 } \leftarrow$ dividend
division property of equality If two expressions are equal, then dividing each by the same nonzero number forms two new equal expressions.
Example: If $a=b$ and $n \neq 0$, then $a \div n=b \div n$
divisor (see division)
double-bar graph A bar graph that compares two sets of data by using two sets of bars
double-line graph A line graph that compares two sets of data by using one line for each set

E

edge (see polyhedron)
endpoint (see ray, segment)
equally likely Outcomes that have an equal chance of occurring.
Example: A spinner is divided into 6 congruent sections. Each section is
an equally likely outcome of a spin.
equation A number sentence that says
that two expressions have the same value.
Example: $3+7=10$
equilateral triangle A triangle with three congruent sides

equivalent fractions Two or more fractions that represent the same number.
Example: $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{4}{8}$
estimate To find an approximate solution mentally by using rounded numbers
evaluate To find the value of an expression
even number A whole number that is divisible by 2
event Any outcome or set of outcomes of an experiment
expanded form A number written as the sum of the value of its digits
Example:
The expanded form of 316 is

$$
300
$$

$+10+6$
experimental probability An estimate of the probability of an event based on the results of an experiment
exponent A number that tells how many times a base is to be used as a factor.
Example: $3^{4}=3 \cdot 3 \cdot 3 \cdot 3$.
The exponent is 4 .
exponential form A number
expressed as a power
Example: Exponential forms of 64 are 2^{6} and 8^{2}.
expression A combination of numbers, symbols of operation, grouping symbols, or variables that represents a mathematical quantity
Examples: $(7+3) \div 5$ or $6 \cdot n$
face (see polyhedron)
factor (see multiplication)
factor tree A diagram used to help
factor a composite number into its prime factors

fraction A number such as $\frac{1}{2}$ or $\frac{3}{4}$ that is used to express a part of a region or set or a rational number
gap A significant interval that contains no data.
graph A pictorial representation of a data set or equation
greatest common factor The greatest number that is a factor of each of two or more numbers Example: The greatest common factor of 24 and 30 is 6.

TI
heptagon A polygon that has 7 sides

Regular heptagon Irregular heptagon
hexagon A polygon that has 6 sides

Regular hexagon Irregular hexagon
histogram A type of bar graph. The categories are consecutive intervals along a number line. The intervals are all the same size with no gaps between them.

τ

identity property of addition The sum of any number and zero is the number itself.
Examples: $7+0=7$ and $n+0=n$
identity property of multiplication The product of any number and 1 is the number itself.
Examples: $10 \cdot 1=10$ and $n \cdot 1=n$
impossible event An event that cannot occur
Example: If you roll a 1-6 number cube, it is impossible to get a 7.
independent events Two or more events whose outcomes do not affect each other.
Example: Two tosses of a coin when you are recording "heads" or "tails"
inequality A number sentence that states that two expressions are not equal.
Examples:
$3+6<10$ read "Three plus six is less than 10."
$5+7>10$ read "Five plus seven is greater than 10."
integer The set of numbers containing all the whole numbers and their opposites
$\ldots{ }^{-3},-2,-1,0,1,2,3, \ldots$
negative integers, zero, positive integers
inverse operation An operation that undoes the results of another operation
Examples:

$(n+5)-5=n$	The inverse of adding 5 is subtracting 5.
The inverse of	
multiplying by	
3 is dividing by	
3.	

isosceles triangle A triangle with at least two congruent sides

$A B \cong B C$
J K I
least common denominator The least number that is a common denominator of two or more fractions. It is the least common multiple of the denominators of each of the fractions.
Example: The least common denominator of $\frac{1}{2}$ and $\frac{2}{3}$ is 6 .
least common multiple The least number that is a common multiple of two or more numbers
Example: 12 is the least common multiple of 3 and 4.
line A set of points that extends without end in two opposite directions

line graph A pictorial representation of data that shows changes over time using line segments

line plot A pictorial representation of a small set of data. Each data item is represented with an " x " placed above a number line.

M

mean The average of a set of data. It is found by adding each item of data and dividing by the number of items.
Example: 4 is the mean of $2,4,5,5$.
median The middle point of the data when they are arranged from least to greatest. It is either the middle number or the mean of the two middle numbers.
Example: 4.5 is the median of 2,4 , 5, 5.
metric system of measurement
An international system of measurement that uses the meter, liter, gram, and degrees Celsius as the basic units of measure
mixed decimal A decimal, such as $0.83 \frac{1}{3}$, that ends with a fraction mixed number A number, such as $2 \frac{2}{3}$, that is made up of a fraction less than one and a whole number
mode The number (or numbers) that occurs most often in a set of data. If no number occurs most often, the data set has no mode.
Example: 5 is the mode of $2,4,5,5$.
multiple of a number The product of the number and any whole number. Example: The multiples of 4 are 0, 4, $8,12,16, \ldots$
multiplication An operation that expresses repeated addition of the same number

$$
\text { Example: } \begin{aligned}
& 12 \leftarrow \text { factor } \\
& \frac{\times 4}{48} \leftarrow \text { factor } \\
& \leftarrow \text { product }
\end{aligned}
$$

multiplication property of equality If two expressions are equal, then multiplying each by the same number forms two new equal expressions.
Example: If $a=b$, then $a \cdot n=b \cdot n$.
negative integer (see integer)
number line A line that has its points labeled with numbers (called coordinates) such as whole numbers, integers, fractions, and so on
$\leftrightarrow-1 \quad-\frac{1}{2} \quad 0 \quad \frac{1}{2} \quad 1 \quad 1 \frac{1}{2} \quad 2$
numeral A name or symbol for a number
numerator The number over the bar in a fraction. It tells how many parts of the whole are under discussion.
numeric expression An expression that does not contain variables Example: $(7+4) \cdot 6$
obtuse angle An angle whose measure is greater than 90° and less than 180°
obtuse triangle A triangle whose largest angle is obtuse

octagon A polygon that has 8 sides

Regular octagon Irregular octagon odd number A whole number that is not divisible by 2
opposites Two numbers whose sum is 0 ; also called additive inverses Examples: 2 and -2 are opposites; so are $-\frac{2}{3}$ and $\frac{2}{3}$.
order of operations The rules that define the order in which the operations in an expression are to be evaluated. They are:
1 Work within parentheses.
2 Evaluate powers.
3 Multiply and divide from left to right.
4 Add and subtract from left to right.
ordered pair A pair of numbers used to locate a point in a coordinate plane. The first number is the horizontal distance from the origin; the second number is the vertical distance.

origin
The point on a coordinate grid at which the two axes meet. Its coordinates are (0,0).
outcome A result in a probability experiment
outlier An item of data that is significantly greater or less than all the other items of data
parallel lines Two lines in the same plane that do not intersect

parallelogram A quadrilateral with two pairs of parallel and congruent sides

pentagon A polygon with 5 sides

Regular pentagon Irregular pentagon
percent A ratio that compares a number to 100
Example: 39% is $\frac{39}{100}$.
percentage The result obtained by multiplying a quantity by a percent
perimeter The distance around a polygon. It is found by adding the lengths of all the sides.
period A group of three digits separated by a comma in a number written in standard form Example: In the number 306,789, 245 , the millions period is 306 , the thousands period is 789, and 245 is the ones period.
perpendicular lines Two lines that intersect to form right angles

pi The ratio of the circumference of any circle to its diameter. Its value is about 3.14 or $\frac{22}{7}$.
pictograph A pictorial representation of data that uses a single symbol to represent multiples of a quantity

place-value system A system of numeration in which the value of a digit depends on its position in the numeral
plane A set of points that forms a flat surface that extends without end in all directions
plane figure A figure whose points are all in the same plane
point A location in space. It is represented by a dot.
polygon A closed plane figure composed of line segments that meet only at their endpoints.

polyhedron A closed figure in space whose faces are all polygons

population The entire group of people or objects about whom information is wanted
positive integer (see integer)
power A number that can be expressed using a single base and exponent
Example: 32 is a power of 2; it is the fifth power of 2.
prime factorization A number expressed as a product of prime numbers
Example:
$36=2 \cdot 2 \cdot 3 \cdot 3$ or $2^{2} \cdot 3^{2}$
prime number A whole number greater than 1 that has exactly two factors, itself and 1
Example: 2 = $2 \cdot 1$
prism A polyhedron that has two congruent, parallel bases that are joined by parallelograms.
A prism is named by the shape of its bases.

probability A number between 0 and 1 used to describe how likely an event is to happen; a measure of chance
product (see multiplication)
proportion A statement that two ratios are equal.
Example: $\frac{3}{4}=\frac{6}{8}$
protractor A tool used to measure angles

pyramid A polyhedron whose base is a polygon and whose other faces are triangles that share a common vertex. A pyramid is named by the shape of its base.

quadrant (see coordinate plane) quadrilateral A polygon that has four sides

quotient (see division)

R

radius A segment from any point on a circle to its center; also the length of this segment

random sample A sample chosen so that every person is equally likely to be chosen
range The difference between the least and greatest number in a set of data
Example: The range of the data 2, $4,5,5$ is $5-2=3$.
rate A ratio in which unlike quantities are being compared, such as words per minute or feet per second
ratio A comparison of two quantities using division
Example: 3:4, 3 to 4 , or $\frac{3}{4}$
rational number A number that can be expressed as the ratio of two integers
Examples:
$1.67=\frac{167}{100} \quad-5=\frac{-5}{1} \quad-3 \frac{3}{4}=\frac{-15}{4}$
ray A part of a line that has one endpoint. When naming it, the endpoint is used first.

reciprocals Two numbers whose product is 1 . They are also called multiplicative inverses.
Examples: 2 and $\frac{1}{2} \quad-\frac{3}{4}$ and $-\frac{4}{3}$
rectangle A parallelogram that has four right angles

regular polygon A polygon that has all sides congruent and all angles congruent. See pentagon, hexagon, etc.

remainder (see division)

repeating decimal A fraction whose decimal expression shows a repeating pattern of digits.
Examples: $\frac{1}{3}=0.333333 \ldots$

$$
\frac{1}{11}=0.09090909 \ldots
$$

representative sample A sample whose results are proportional to the total population
rhombus A parallelogram that has all of its sides congruent

right angle An angle whose measure is 90°

right triangle A triangle whose largest angle is a right angle

rounded number A number that is close to a given number in which the final digits have been replaced with zeroes
Examples: 12,501 rounded to the nearest hundred is 12,500 .
12,501 rounded to the nearest thousand is 13,000 .

8

sample A small group selected from a population. Data is collected from the sample and is used to make generalizations about the population.
scale drawing A picture or diagram that is an enlargement or reduction of another. Each distance in the drawing is in the same proportion as the corresponding distance in the original.
scale factor The ratio in a scale drawing or other similar figures that compares the scale drawing dimensions to the actual dimensions
scalene triangle A triangle that has no congruent sides

segment A part of a line that has two endpoints

$$
\vec{A} \quad \overline{A B}
$$

semicircle Half of a circle

side (see polygon)
similar figures Two figures that have the same shape, but not necessarily the same size. In similar polygons, corresponding angles are congruent and corresponding sides are proportional.

simplest form A fraction less than 1 in which the numerator and denominator have no common factors except 1 , or a mixed number in which the fractional part is in simplest form
Examples:

$$
\frac{5}{10}=\frac{1}{2} \quad 2 \frac{6}{9}=2 \frac{2}{3} \quad \frac{12}{4}=3
$$

solution A value of the variable that makes an open equation true
space The set of all points
space figure A figure that is not entirely in one plane
sphere A space figure that has all of its points the same distance from a point, called the center.

square A rectangle that has all its sides congruent

standard form A number that is expressed as a base 10 numeral Example: 3,126 is the standard form of the number three thousand, one hundred twenty-six.
subtraction An arithmetic operation that takes away a given amount

Example: 345

$$
\frac{-122}{223} \leftarrow \text { difference }
$$

subtraction property of equality
If two expressions are equal and the same number is subtracted from each, then the two new expressions are equal.
Example: If $n+7=10$, then $n+7-7=10-7$.
sum (see addition)
supplementary angles Two angles whose measures have a sum of 180°.

surface area The total area of all the faces or surfaces of a space figure
survey A method of gathering data about a population by recording the results of specific questions

\downarrow

term (of a ratio) Either of the two numbers of a ratio
terminating decimal The decimal expression of a fraction whose denominator can be written using only powers of 2 and 5 .
Examples: $0.1=\frac{1}{10} \quad 0.675=\frac{27}{40}$
theoretical probability The ratio of the number of favorable outcomes of an experiment to the number of possible outcomes. The possible outcomes must be equally likely.
trapezoid A quadrilateral that has exactly one pair of parallel sides

tree diagram An organized way of listing all the possible outcomes of an experiment

triangle A polygon that has three sides

T
unit A fixed quantity used as a standard for length, area, volume, weight, and so on
unit price The cost of a single unit of an item
Example: $\$ 3$ per pound for hamburger meat
unit rate A rate whose second term is a single unit, such as 50 miles per hour

V

variable A letter that is used to represent one or more numbers
variable expression (see algebraic expression)
vertex (see polygon, polyhedron)
vertical angles Two opposite angles formed by two intersecting lines

$\angle A X P$ and $\angle B X Q$ are vertical angles.
volume A measure of the space within a closed figure in space

W

whole number Any of the numbers $0,1,2,3, \ldots$

X

x-axis The horizontal number line on a coordinate plane

$$
\mathbf{Y}
$$

\boldsymbol{y}-axis The vertical number line on a coordinate plane

Z

zero property of multiplication
The product of any number and 0 is 0 .
Example: $6 \cdot 0=0$

HOUGHTON MIFFLIN

Steps

[^0]: No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system without the prior written permission of the copyright owner, unless such copying is expressly permitted by federal copyright law. Address requests for permission to make copies of Houghton Mifflin materials to School Permissions, Houghton Mifflin Company, 222 Berkeley Street, Boston, MA 02116.

 Printed in the U.S.A.

