A Correlation of

Pearson
 Algebra 1, Geometry, and Algebra 2 Common Core
 © 2012

to the
Common Core State Standards Comparison with

Arkansas
Student Learning Expectations for Mathematics

Grades 9-12

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
 to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Table of Contents

Number and Quantity 1
Algebra 19
Functions 53
Geometry 92
Statistics and Probability 118

Pearson Algebra 1, Geometry, and Algebra 2, Common Core ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
Number and Quantity		
CC.9-12.N.RN. 1 Extend the properties of exponents to rational exponents. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{\wedge}(1 / 3)$ to be the cube root of 5 because we want $[5 \wedge(1 / 3)]^{\wedge} 3=5 \wedge[(1 / 3) \times 3]$ to hold, so $\left[5^{\wedge}(1 / 3)\right]^{\wedge} 3$ must equal 5.	AR.9-12.PRF.AII.4.7 (PRF.4.AII.7) Establish the relationship between radical expressions and expressions containing rational exponents	Algebra 1: SE/TE: 448-452 TE: 452A Lesson Resources Geometry: SE/TE: 399 Algebra 2: SE/TE: 631-366, 381-388 TE: 366A Lesson Resources
	AR.9-12.PRF.AII.4.8 (PRF.4.AII.8) Simplify variable expressions containing rational exponents using the laws of exponents	Algebra 1: SE/TE: 425-431 TE: 431 Lesson Resources Geometry: SE/TE: 399 Algebra 2: SE/TE: 363, 368-370, 376
	AR.9-12.QEF.AII.3.1 (QEF.3.AII.1) Perform computations with radicals: -- simplify radicals with different indices, -- add, subtract, multiply and divide radicals, -- rationalize denominators, -- solve equations that contain radicals or radical expressions	Algebra 1: SE/TE: 448-452, 619-625, 626- 631, 633-638 TE: 625A Lesson Resources, 638A Lesson Resources Geometry: SE/TE: 399 Algebra 2: SE/TE: 361-368, 367-373, 374- 380, 381-388, 390-396
	AR.9-12.LA.AI.1.8 (LA.1.AI.8) Simplify radical expressions such as $3 /(\sqrt{ } 7)$.	Algebra 1: SE/TE: 619-624 Geometry: SE/TE: 399 Algebra 2: SE/TE: 369-370, 377

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
(Continued) CC.9-12.N.RN. 1 Extend the properties of exponents to rational exponents. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{\wedge}(1 / 3)$ to be the cube root of 5 because we want $\left[5^{\wedge}(1 / 3)\right]^{\wedge} 3=5^{\wedge}[(1 / 3) \times 3]$ to hold, so $\left[5^{\wedge}(1 / 3)\right]^{\wedge} 3$ must equal 5.	AR.9-12.PRF.AIII. 2.5 (PRF.2.AIII.5) Establish the relationship between radical expressions and expressions containing rational exponents, and simplify variable expressions containing rational exponents using the laws of exponents	Algebra 1: SE/TE: 633-638, 639-644 TE: 638A Lesson Resources, 644A Lesson Resources Geometry: SE/TE: 399 Algebra 2: SE/TE: 361-366, 368-370, 376, 381-388 TE: 366A Lesson Resources
CC.9-12.N.RN. 2 Extend the properties of exponents to rational exponents. Rewrite expressions involving radicals and rational exponents using the properties of exponents.	AR.9-12.PRF.AII.4.7 (PRF.4.AII.7) Establish the relationship between radical expressions and expressions containing rational exponents	Algebra 1: SE/TE: 448-452; TE: 452A Lesson Resources Geometry: SE/TE: 399 Algebra 2: SE/TE: 631-366, 381-388 TE: 366A Lesson Resources
	AR.9-12.PRF.AII.4.8 (PRF.4.AII.8) Simplify variable expressions containing rational exponents using the laws of exponents	Algebra 1: SE/TE: 433-438, 439-443 Geometry: SE/TE: 399 Algebra 2: SE/TE: 363, 368-370, 376

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.N.RN. 2 Extend the properties of exponents to rational exponents. Rewrite expressions involving radicals and rational exponents using the properties of exponents.	AR.9-12.QEF.AII.3.1 (QEF.3.AII.1) Perform computations with radicals: -- simplify radicals with different indices, -- add, subtract, multiply and divide radicals, -- rationalize denominators, -- solve equations that contain radicals or radical expressions	Algebra 1: SE/TE: 448-452, 619-625, 626- 631, 633-638 TE: 625A Lesson Resources, 638A Lesson Resources Geometry: SE/TE: 399 Algebra 2: SE/TE: 361-368, 367-373, 374- 380, 381-388, 390-396
	AR.9-12.LA.AI.1.9 (LA.1.AI.9) Add, subtract, and multiply simple radical expressions like $3 \sqrt{ } 20+7 \sqrt{ } 5$ and $(4 \sqrt{ } 5)(2 \sqrt{ } 3)$.	Algebra 1: SE/TE: 619-625, 626-631 TE: 625A Lesson Resources, 631A Lesson Resources Geometry: SE/TE: 399 Algebra 2: SE/TE: 367-368, 374-376
	AR.9-12.PRF.AIII. 2.5 (PRF.2.AIII.5) Establish the relationship between radical expressions and expressions containing rational exponents, and simplify variable expressions containing rational exponents using the laws of exponents	Algebra 1: SE/TE: 633-638, 639-644 TE: 638A Lesson Resources, 644A Lesson Resources Geometry: SE/TE: 399 Algebra 2: SE/TE: 361-366, 368-370, 376, 381-388 TE: 366A Lesson Resources
CC.9-12.N.RN. 3 Use Properties of rational and irrational numbers. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero number and an irrational number is irrational.	No Matches in Arkansas Frameworks	Studied in 4th year course.

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.N.Q. 1 Reason quantitatively and use units to solve problems. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*	AR.9-12.DIP.AI.5.5 (DIP.5.AI.5) Use two or more graphs (i.e., box-and- whisker, histograms, scatter plots) to compare data sets	Algebra 1: SE/TE: 746-751, 732-737, 336343 TE: 751A Lesson Resources/ Histograms, 737A Lesson Resources, 343A Lesson Resources Algebra 2: SE/TE: 92-98, 713-714 TE: 98A Lesson Resources
	AR.9-12.DIP.AI.5.6 (DIP.5.AI.6) Construct and interpret a cumulative frequency histogram in real life situations	Algebra 1: SE/TE: 732-737 TE: 737A Lesson Resources Algebra 2: SE/TE: 695
	AR.9-12.DIP.AI.5.1 (DIP.5.AI.1) Construct and use scatter plots and line of best fit to make inferences in real life situations	Algebra 1: SE/TE: 336-343 TE: 343A Lesson Resources Algebra 2: SE/TE: 92-98, 713-714 TE: 98A Lesson Resources
	AR.9-12.SEI.AI.2.5 (SEI.2.AI.5) Solve real world problems that involve a combination of rates, proportions and percents	Algebra 1: SE/TE: 116-121, 137-143 TE: 121A Lesson Resources, 143A Lesson Resources Geometry: SE/TE: 432-435, 443,446 TE: 438A
	AR.9-12.SEI.AI.2.6 (SEI.2.AI.6) Solve problems involving direct variation and indirect (inverse) variation to model rates of change	Algebra 1: SE/TE: 698-704 TE: 704A Lesson Resources Algebra 2: SE/TE: 68-72, 498-504 TE: 73A Lesson Resources, 505A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
(Continued) CC.9-12.N.Q. 1 Reason quantitatively and use units to solve problems. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*	AR.9-12.LF.AI.3.5 (LF.3.AI.5) Interpret the rate of change/slope and intercepts within the context of everyday life	Algebra 1: SE/TE: 294-300 TE: 300A Lesson Resources Geometry: SE/TE: 189-195 Algebra 2: SE/TE: 70, 501-502, 504
	AR.9-12.M.G.3.2 (M.3.G.2) Apply, using appropriate units, appropriate formulas (area, perimeter, surface area, volume) to solve application problems involving polygons, prisms, pyramids, cones, cylinders, spheres as well as composite figures, expressing solutions in both exact and approximate forms	Algebra 1: SE/TE: 110 Geometry: SE/TE: 699-707 TE: 707A Lesson Resources, 708-715, 715A Lesson Resources, 717-724, 724A Lesson Resources, 726-732, 732A Lesson Resources, 733-740, 740A Lesson Resources, 742-749, 749A Lesson Resources
	AR.9-12.PS.AC.1.5 (PS.1.AC.5) Interpret and evaluate, with and without appropriate technology, graphical and tabular data displays for: -- consistency with the data, -- appropriateness of type of graph or data display, -- scale, -- overall message	Algebra 1: SE/TE: 726-731, 732-737, 738- 744, 746-751, 753-759 TE: 731A Lesson Resources, 737A Lesson Resources, 744A Lesson Resources, 751A Lesson Resources, 759A Lesson Resources Geometry: SE/TE: 83, 111-112, 658, 660, 748 Algebra 2: SE/TE: 711-718 TE: 718A Lesson Resources
	AR.9-12.ME.TDM.3.1 (ME.3.TDM.1) Solve problems using dimensional analysis (factor-label method) (e.g., construction, medical, metric, standard to metric, rate conversions)	Algebra 1: SE/TE: 116-121 TE: 121A Lesson Resources Geometry: SE/TE: T886 Algebra 2: SE/TE: 845

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.N.CN. 3 (+) Perform arithmetic operations with complex numbers. Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.	AR.9-12.QEF.AII.3.2 (QEF.3.AII.2) Extend the number system to include the complex numbers: -- define the set of complex numbers, -- add, subtract, multiply, and divide complex numbers, -- rationalize denominators	Algebra 2: SE/TE: 248-252 TE: 255A Lesson Resources
CC.9-12.N.CN. 4 (+) Represent complex numbers and their operations on the complex plane. Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.	AR.9-12.PC.PCT.8.1 (PC.8.PCT.1) Convert polar coordinates to rectangular coordinates and rectangular coordinates to polar coordinates	Studied in a 4th year course.
	AR.9-12.PC.PCT.8.2 (PC.8.PCT.2) Represent equations given in rectangular coordinates in terms of polar coordinates	Studied in a 4th year course.
	AR.9-12.PC.PCT.8.3 (PC.8.PCT.3) Graph polar equations and use appropriate technology when needed	Studied in a 4th year course.
	AR.9-12.PC.PCT.8.4 (PC.8.PCT.4) Apply polar coordinates to real world situations and use appropriate technology when needed	Studied in a 4th year course.
CC.9-12.N.CN. 5 (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, (-1 $+\sqrt{ } 3 i)^{3}=8$ because $(-1+\sqrt{ } 3$ i) has modulus 2 and argument 1200°.	No Matches in Arkansas Frameworks	Algebra 2: SE/TE: 248-252 TE: 255A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.N.CN. 6 (+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and of the midpoint of a segment as the average of the numbers at its midpoint.	No Matches in Arkansas Frameworks	Algebra 2: SE/TE: 248-254 TE: 255A Lesson Resources
CC.9-12.N.CN. 7 Use complex numbers in polynomial identities and equations. Solve quadratic equations with real coefficients that have complex solutions.	AR.9-12.QEF.AII.3.3 (QEF.3.AII.3) Analyze and solve quadratic equations with and without appropriate technology by: -- factoring, -- graphing, -- extracting the square root, -- completing the square, -- using the quadratic formula	Algebra 2: SE/TE: 319-322 TE: 324A Lesson Resources
CC.9-12.N.CN. 8 (+) Use complex numbers in polynomial identities and equations. Extend polynomial identities to the complex numbers. For example, rewrite $x^{\wedge} 2+4$ as $(x+2 i)(x-2 i)$.	AR.9-12.QEF.AII.3.3 (QEF.3.AII.3) Analyze and solve quadratic equations with and without appropriate technology by: -- factoring, -- graphing, -- extracting the square root, -- completing the square, -- using the quadratic formula	Algebra 2: SE/TE: 319-322 TE: 324A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.N.CN. 9 (+) Use complex numbers in polynomial identities and equations. Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.	AR.9-12.PRF.AII.4.1 (PRF.4.AII.1) Determine the factors of polynomials by: -- using factoring techniques including grouping and the sum or difference of two cubes, -- using long division, -- using synthetic division	Algebra 2: SE/TE: 319-322 TE: 324A Lesson Resources
	AR.9-12.QEF.AII.3.3 (QEF.3.AII.3) Analyze and solve quadratic equations with and without appropriate technology by: -- factoring, -- graphing, -- extracting the square root, -- completing the square, -- using the quadratic formula	Algebra 2: SE/TE: 319-322 TE: 324A Lesson Resources
	AR.9-12.PRF.AIII.2.1 (PRF.2.AIII.1) Determine the factors of polynomials by: -- using factoring techniques including grouping, the difference of two squares, and the sum or difference of two cubes, -- using synthetic division	Algebra 2: SE/TE: 319-322 TE: 324A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012					
CC.9-12.N.VM. 1 (+) Represent and model with vector quantities. Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v(bold), \|v	,		v		, v(not bold)).	AR.9-12.OT.PCT.6.4 (OT.6.PCT.4) Use vectors to solve problems and describe addition of vectors and multiplication of a vector by a scalar, both symbolically and geometrically	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources
	AR.9-12.OT.PCT.6.5 (OT.6.PCT.5) Use vectors to model situations defined by magnitude and direction and analyze and solve real world problems by using appropriate technology when needed	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources					
CC.9-12.N.VM. 2 (+) Represent and model with vector quantities. Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.	AR.9-12.OT.PCT.6.4 (OT.6.PCT.4) Use vectors to solve problems and describe addition of vectors and multiplication of a vector by a scalar, both symbolically and geometrically	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources					
CC.9-12.N.VM. 3 (+) Represent and model with vector quantities. Solve problems involving velocity and other quantities that can be represented by vectors.	AR.9-12.OT.PCT.6.4 (OT.6.PCT.4) Use vectors to solve problems and describe addition of vectors and multiplication of a vector by a scalar, both symbolically and geometrically	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources					
	AR.9-12.0T.PCT.6.5 (OT.6.PCT.5) Use vectors to model situations defined by magnitude and direction and analyze and solve real world problems by using appropriate technology when needed	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources					

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.N.VM.4 (+) Perform operations on vectors. Add and subtract vectors.	AR.9-12.OT.PCT.6.4 (OT.6.PCT.4) Use vectors to solve problems and describe addition of vectors and multiplication of a vector by a scalar, both symbolically and geometrically	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources
	AR.9-12.OT.PCT.6.5 (OT.6.PCT.5) Use vectors to model situations defined by magnitude and direction and analyze and solve real world problems by using appropriate technology when needed	TE: 815A Lesson Resources SE/TE: 809-815
CC.9-12.N.VM.4a (+) Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.	AR.9-12.OT.PCT.6.4 (OT.6.PCT.4) Use vectors to solve problems and describe addition of vectors and multiplication of a vector by a scalar, both symbolically and geometrically	Algebra 2: SE/TE: 809-815

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.N.VM.4b (+) Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.	AR.9-12.OT.PCT.6.4 (OT.6.PCT.4) Use vectors to solve problems and describe addition of vectors and multiplication of a vector by a scalar, both symbolically and geometrically	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources
	AR.9-12.OT.PCT.6.5 (OT.6.PCT.5) Use vectors to model situations defined by magnitude and direction and analyze and solve real world problems by using appropriate technology when needed	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources
CC.9-12.N.VM.4c (+) Understand vector subtraction $\mathbf{v}-\mathbf{w}$ as $\mathbf{v}+(-\mathbf{w})$, where ($-\mathbf{w}$) is the additive inverse of w, with the same magnitude as \mathbf{w} and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.	AR.9-12.OT.PCT.6.4 (OT.6.PCT.4) Use vectors to solve problems and describe addition of vectors and multiplication of a vector by a scalar, both symbolically and geometrically	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources
	AR.9-12.OT.PCT.6.5 (OT.6.PCT.5) Use vectors to model situations defined by magnitude and direction and analyze and solve real world problems by using appropriate technology when needed	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012			
CC.9-12.N.VM. 5 (+) Perform operations on vectors. Multiply a vector by a scalar.	AR.9-12.OT.PCT.6.4 (OT.6.PCT.4) Use vectors to solve problems and describe addition of vectors and multiplication of a vector by a scalar, both symbolically and geometrically	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources			
	AR.9-12.OT.PCT.6.5 (OT.6.PCT.5) Use vectors to model situations defined by magnitude and direction and analyze and solve real world problems by using appropriate technology when needed	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources			
CC.9-12.N.VM.5a (+) Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication componentwise, e.g., as c(v(sub $x)$, v(sub $y))=(\operatorname{cv}(\operatorname{sub} x), \operatorname{cv}(\operatorname{sub} y))$.	AR.9-12.OT.PCT.6.4 (OT.6.PCT.4) Use vectors to solve problems and describe addition of vectors and multiplication of a vector by a scalar, both symbolically and geometrically	Algebra 2: SE/TE: 809-815 TE: 815A Lesson Resources			
CC.9-12.N.VM.5b (+) Compute the magnitude of a scalar multiple cv using \|	cv		= $\|c\| v$. Compute the direction of cv knowing that when $\|c\| v=/$ 0 , the direction of $c v$ is either along v (for $c>0$) or against v	AR.9-12.OT.PCT.6.5 (OT.6.PCT.5) Use vectors to model situations defined by magnitude and direction and analyze and solve real world problems by using appropriate technology when needed	Algebra 2: SE/TE: 814-815

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.N.VM. 6 (+) Perform operations on matrices and use matrices in applications. Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.	AR.9-12.LEI.AII. 2.3 (LEI.2.AII.3) Develop and apply, with and without appropriate technology, the basic operations and properties of matrices (associative, commutative, identity, and inverse)	Algebra 1: SE/TE: 726-731 TE: 731A Lesson Resources Algebra 2: SE/TE: 764-770, 772-776, 782- 787, 792-796 TE: 770A Lesson Resources, 779A Lesson Resources, 790A Lesson Resources, 800A Lesson Resources
	AR.9-12.DIP.AI.5.3 (DIP.5.A1.3) Construct simple matrices for real life situations	Algebra 1: SE/TE: 728-730 Algebra 2: SE/TE: 769, 778
	AR.9-12.MM.TM.3.2 (MM.3.TM.2) Apply, with appropriate technology, matrices to real world problems and decision making	Algebra 2: SE/TE: 771
	AR.9-12.MA.TDM.1.1 (MA.1.TDM.1) Collect and interpret data in a matrix and perform operations to solve real-world problems, with and without technology	Algebra 1: SE/TE: 726-731 TE: 731A Lesson Resources Algebra 2: SE/TE: 780, 787

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.N.VM. 7 (+) Perform operations on matrices and use matrices in applications. Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.	AR.9-12.LEI.AII.2.3 (LEI.2.AII.3) Develop and apply, with and without appropriate technology, the basic operations and properties of matrices (associative, commutative, identity, and inverse)	Algebra 1: SE/TE: 726-731 TE: 731A Lesson Resources Algebra 2: SE/TE: 764-770; 772-776; 782- 787; 792-796
	AR.9-12.DIP.AI.5.2 (DIP.5.AI.2) Use simple matrices in addition, subtraction, and scalar multiplication	Algebra 1: SE/TE: 726-731 Algebra 2: SE/TE: 764-770; 772-776; 782- 787; 792-796
	AR.9-12.MM.TM.3.2 (MM.3.TM.2) Apply, with appropriate technology, matrices to real world problems and decision making	Algebra 2: SE/TE: 764-770; 772-776; 782- 787; 792-796
	AR.9-12.MA.TDM.1.1 (MA.1.TDM.1) Collect and interpret data in a matrix and perform operations to solve real-world problems, with and without technology	Algebra 1: SE/TE: 726-731 TE: 731A Lesson Resources Algebra 2: SE/TE: 764-770; 772-776; 782- 787; 792-796

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.N.VM. 8 (+) Perform operations on matrices and use matrices in applications. Add, subtract, and multiply matrices of appropriate dimensions.	AR.9-12.LEI.AII. 2.3 (LEI.2.AII.3) Develop and apply, with and without appropriate technology, the basic operations and properties of matrices (associative, commutative, identity, and inverse)	Algebra 1: SE/TE: 726-731 Algebra 2: SE/TE: 764-770; 772-776; 782- 787; 792-796
	AR.9-12.DIP.AI.5.2 (DIP.5.AI.2) Use simple matrices in addition, subtraction, and scalar multiplication	Algebra 1: SE/TE: 726-731 Algebra 2: SE/TE: 764-770; 772-776; 782- 787; 792-796
	AR.9-12.MM.TM.3.2 (MM.3.TM.2) Apply, with appropriate technology, matrices to real world problems and decision making	Algebra 2: SE/TE: 769, 771, 778
CC.9-12.N.VM. 9 (+) Perform operations on matrices and use matrices in applications. Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.	AR.9-12.LEI.AII. 2.3 (LEI.2.AII.3) Develop and apply, with and without appropriate technology, the basic operations and properties of matrices (associative, commutative, identity, and inverse)	Algebra 1: SE/TE: 726-731 Algebra 2: SE/TE: 769, 771, 778
	AR.9-12.MM.TM.3.2 (MM.3.TM.2) Apply, with appropriate technology, matrices to real world problems and decision making	Algebra 1: SE/TE: 726-731 Algebra 2: SE/TE: 769, 771, 778

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.N.VM. 10 (+) Perform operations on matrices and use matrices in applications. Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.	AR.9-12.LEI.AII.2.3 (LEI.2.AII.3) Develop and apply, with and without appropriate technology, the basic operations and properties of matrices (associative, commutative, identity, and inverse)	Algebra 1: SE/TE: 726-731 Algebra 2: SE/TE: 764-770; 772-776; 782- 787; 792-796
	AR.9-12.MM.TM.3.2 (MM.3.TM.2) Apply, with appropriate technology, matrices to real world problems and decision making	Algebra 1: SE/TE: 726-731 Algebra 2: SE/TE: 769, 771, 778, 787, 790
	AR.9-12.MA.TDM.1.3 (MA.1.TDM.3) Find and use the inverse of a matrix to solve real-world problems (e.g., cryptology)	Algebra 1: SE/TE: 726-731 Algebra 2: SE/TE: 785, 787, 796
CC.9-12.N.VM. 11 (+) Perform operations on matrices and use matrices in applications. Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.	AR.9-12.MM.TM.3.2 (MM.3.TM.2) Apply, with appropriate technology, matrices to real world problems and decision making	Algebra 2: SE/TE: 769, 771, 778, 796
	AR.9-12.OT.PCT.6.4 (OT.6.PCT.4) Use vectors to solve problems and describe addition of vectors and multiplication of a vector by a scalar, both symbolically and geometrically	Algebra 2: SE/TE: 810

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.N.VM. 12 (+) Perform operations on matrices and use matrices in applications. Work with 2×2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area.	AR.9-12.MM.TM.3.2 (MM.3.TM.2) Apply, with appropriate technology, matrices to real world problems and decision making	Algebra 2: SE/TE: 769, 771, 778, 787, 796
Algebra		
CC.9-12.A.SSE. 1 Interpret the structure of expressions. Interpret expressions that represent a quantity in terms of its context.*	AR.9-12.LA.AI.1.2 (LA.1.AI.2) Translate word phrases and sentences into expressions, equations, and inequalities, and vice versa	Algebra 1: SE/TE: 171-175, 178-183 308- 314, 315-320, 322-328 TE: 177A Lesson Resources, 183A Lesson Resources, 314A Lesson Resources, 320A Lesson Resources, 328A Lesson Resources Algebra 2: SE/TE: 18-20, 28, 31, 33-37
CC.9-12.A.SSE.1a Interpret parts of an expression, such as terms, factors, and coefficients.*	AR.9-12.LA.AI.1.2 (LA.1.AI.2) Translate word phrases and sentences into expressions, equations, and inequalities, and vice versa	Algebra 1: SE/TE: 171-175, 178-183,3 08- 314, 315-320, 322-328 TE: 177A Lesson Resources, 183A Lesson Resources, 314A Lesson Resources, 320A Lesson Resources, 328A Lesson Resources Algebra 2: SE/TE: 18-20, 28, 31, 33-37
CC.9-12.A.SSE.1b Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{\wedge} n$ as the product of P and a factor not depending on P.*	AR.9-12.RF.AII.1.4 (RF.1.AII.4) Analyze and report, with and without appropriate technology, the effect of changing coefficients, exponents, and other parameters on functions and their graphs (linear, quadratic, and higher degree polynomial)	Algebra 1: SE/TE: 242, 246-247, 308-313, 546-551, 553-558, 675 TE: 313A Lesson Resources, 552A Lesson Resources, 558A Lesson Resources Algebra 2: SE/TE: 99-100, 194-198, 339341

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.A.SSE. 3 Write expressions in equivalent forms to solve problems. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*	AR.9-12.QEF.AII.3.3 (QEF.3.AII.3) Analyze and solve quadratic equations with and without appropriate technology by: -- factoring, -- graphing, -- extracting the square root, -- completing the square, -- using the quadratic formula	Algebra 1: SE/TE: 561-564, 568-572, 576- 580, 582-588 TE: 572A Lesson Resources, 581A Lesson Resources, 588A Lesson Resources Geometry: SE/TE: TE: 439 Algebra 2: SE/TE: 216-223, 226-231, 233- 239, 240-247 TE: 223A, 231A, 239A, 247A
	AR.9-12.NLF.AI.4.3 (NLF.4.AI.3) Solve quadratic equations using the appropriate methods with and without technology: -- factoring, -- quadratic formula with real number solutions	Algebra 1: SE/TE: 568-572, 582-588 Algebra 2: SE/TE: 218-220, 226-231, 233- 239, 240-247
	AR.9-12.NF.AC.4.3 (NF.4.AC.3) Solve, with and without appropriate technology, quadratic equations with real number solutions using factoring and the quadratic formula	Algebra 1: SE/TE: 568-572, 582-588 Algebra 2: SE/TE: 226-230, 240-244 TE: 231A, 247A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.A.SSE. 3 Write expressions in equivalent forms to solve problems. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*	AR.9-12.QEF.AII.3.5 (QEF.3.AII.5) Develop and analyze, with and without appropriate technology, quadratic relations: -- graph a parabolic relationship when given its equation -- write an equation when given its roots (zeros or solutions) or graph -- determine the nature of the solutions graphically and by evaluating the discriminant -- determine the maximum or minimum values and the axis of symmetry both graphically and algebraically	Algebra 1: SE/TE: 546-552, 553-558, 561- 562, 582-588 TE: 552A Lesson Resources, 558A Lesson Resources Algebra 2: SE/TE: 194-201, 203-204, 209- 211, 232, 242-243, 268
	AR.9-12.PRF.AII.4.8 (PRF.4.AII.8) Simplify variable expressions containing rational exponents using the laws of exponents	Algebra 1: SE/TE: 433-438, 439-443 Algebra 2: SE/TE: 360, 381-388, 424
CC.9-12.A.SSE. 3 Write expressions in equivalent forms to solve problems. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*	AR.9-12.F.TFM.5.2 (F.5.TFM.2) Apply properties of logarithms to convert and solve logarithmic (common and natural) and exponential equations	```Algebra 2: SE/TE: 462-467, 469-475, 478- 481,489```

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.A.SSE.3b Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.*	AR.9-12.QEF.AII.3.3 (QEF.3.AII.3) Analyze and solve quadratic equations with and without appropriate technology by: -- factoring, -- graphing, -- extracting the square root, -- completing the square, -- using the quadratic formula	Algebra 1: SE/TE: 561-564, 568-572, 576- 580, 582-588 TE: 572A Lesson Resources, 581A Lesson Resources, 588A Lesson Resources Geometry: SE/TE: TE: 439 Algebra 2: SE/TE: 216-223, 226-231, 233- 239, 240-247 TE: 223A, 231A, 239A, 247A Lesson Resources
	AR.9-12.NLF.AI.4.3 (NLF.4.AI.3) Solve quadratic equations using the appropriate methods with and without technology: -- factoring, -- quadratic formula with real number solutions	Algebra 1: SE/TE: 568-572, 582-588 Algebra 2: SE/TE: 218-220, 226-231, 233- 239, 240-247
	AR.9-12.QEF.AII.3.5 (QEF.3.AII.5) Develop and analyze, with and without appropriate technology, quadratic relations: -- graph a parabolic relationship when given its equation -- write an equation when given its roots (zeros or solutions) or graph -- determine the nature of the solutions graphically and by evaluating the discriminant -- determine the maximum or minimum values and the axis of symmetry both graphically and algebraically	Algebra 1: SE/TE: 546-552, 553-558, 561- 562, 582-588 TE: 552A Lesson Resources, 558A Lesson Resources Algebra 2: SE/TE: 194-201, 203-204, 209211, 232, 242-243, 268, 290

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.A.SSE.3c Use the properties of exponents to transform expressions for exponential functions. For example the expression $1.15^{\wedge} t$ can be rewritten as $\left[1.15^{\wedge}(1 / 12)\right]^{\wedge}(12 t) \approx$ $1.012 \wedge(12 t)$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15\%.*	AR.9-12.PRF.AII.4.8 (PRF.4.AII.8) Simplify variable expressions containing rational exponents using the laws of exponents	Algebra 1: SE/TE: 433-438, 439-443 Algebra 2: SE/TE: 360, 381-388, 424
	AR.9-12.F.TFM.5.2 (F.5.TFM.2) Apply properties of logarithms to convert and solve logarithmic (common and natural) and exponential equations	$\begin{aligned} & \text { Algebra 2: } \\ & \text { SE/TE: } 462-467,469-475,468- \\ & 481,489 \end{aligned}$
CC.9-12.A.SSE. 4 Write expressions in equivalent forms to solve problems. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.*	AR.9-12.SS.PCT.4.2 (SS.4.PCT.2) Define and discriminate between arithmetic and geometric sequences and series and use appropriate technology when needed	Algebra 1: SE/TE: 274-281, 467-472 TE: 281A Lesson Resources, 472A Lesson Resources Algebra 2: SE/TE: 572-577, 580-586, 587- $592,595-600$ TE: 577A, 586A, 593A, 601A Lesson Resources
	AR.9-12.SS.PCT.4.3 (SS.4.PCT.3) Solve, with and without appropriate technology, problems involving the sum (including Sigma notation) of finite and infinite sequences and series	```Algebra 2: SE/TE: 572-577, 580-586, 587- 592, 595-600 TE: 577A, 586A, 593A, 601A Lesson Resources```
	AR.9-12.F.TFM.5.3 (F.5.TFM.3) Solve real-world problems involving: -- compound interest, -- amortization, -- annuities, -- appreciation, -- depreciation, -- investments	$\begin{aligned} & \text { Algebra 2: } \\ & \text { SE/TE: } 436-437,447-449 \end{aligned}$

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.A.APR. 1 Perform arithmetic operations on polynomials. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	AR.9-12.LA.AI.1.5 (LA.1.AI.5) Perform polynomial operations (addition, subtraction, multiplication) with and without manipulatives	Algebra 1: SE/TE: 486-491, 492-496, 498503 TE: 491A Lesson Resources, 496A Lesson Resources, 508A Lesson Resources Algebra 2: SE/TE: 398-399
	AR.9-12.RF.AII.1.2 (RF.1.AII.2) Evaluate, add, subtract, multiply, and divide functions and give appropriate domain and range restrictions	Algebra 1: SE/TE: 268-271 Algebra 2: SE/TE: 398-399, 408, 414, 434, 435, 515-516
CC.9-12.A.APR. 2 Understand the relationship between zeros and factors of polynomial. Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.	AR.9-12.PRF.AII.4.1 (PRF.4.AII.1) Determine the factors of polynomials by: -- using factoring techniques including grouping and the sum or difference of two cubes, -- using long division, -- using synthetic division	Algebra 2: SE/TE: 396-399, 303-310
	AR.9-12.NLF.AI.4.3 (NLF.4.AI.3) Solve quadratic equations using the appropriate methods with and without technology: -- factoring, -- quadratic formula with real number solutions	Algebra 1: SE/TE: 568-572, 582-588 Algebra 2: SE/TE: 218-220, 226-231, 233- $239,240-247$ TE: 223A, 239A, 247A Lesson Resources
	AR.9-12.NF.AC.4.1 (NF.4.AC.1) Factor polynomials: -- greatest common factor, -- binominals (difference of squares), -- trinomials, -- combinations of the above	Algebra 1: SE/TE: 492-496, 512-517, 518- 522, 523-528, 529-533 TE: 496A Lesson Resources, 517A Lesson Resources, 522A Lesson Resources, 528A Lesson Resources, 533A Lesson Resources Algebra 2: SE/TE: 218, 297

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.A.APR.2 Understand the relationship between zeros and factors of polynomial. Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x - a is p(a), so p(a) = 0 if and only if (x - a) is a factor of	AR.9-12.PRF.PCT.1.2 (PRF.1.PCT.2) Solve, with and without appropriate technology, polynomial equations utilizing techniques such as Descartes' Rule of Signs, upper and lower bounds, Intermediate Value Theorem and Rational Root Theorem	Algebra 2: SE/TE: 315

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.A.APR.3 Understand the relationship between zeros and factors of polynomials. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	AR.9-12.PRF.PCT.1.2 (PRF.1.PCT.2) Solve, with and without appropriate technology, polynomial equations utilizing techniques such as Descartes' Rule of Signs, upper and lower bounds, Intermediate Value Theorem and Rational Root Theorem	Algebra 2: SE/TE: 315

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.PRF.AIII.2.1 (PRF.2.AIII.1) Determine the factors of polynomials by: -- using factoring techniques including grouping, the difference of two squares, and the sum or difference of two cubes, -- using synthetic division	Algebra 2: SE/TE: 396-399, 303-310

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.	AR.9-12.LA.AI.1.6 (LA.1.AI.6) Simplify algebraic fractions by factoring	Algebra 1: SE/TE: 671-675 Algebra 2: SE/TE: 288-295 TE: 295A
	AR.9-12.LA.AI.1.7 (LA.1.AI.7) Recognize when an expression is undefined	Algebra 1: SE/TE: 664-665 Algebra 2: SE/TE: 516-523, 527-529 TE: 523A
	AR.9-12.RF.AII.1.2 (RF.1.AII.2) Evaluate, add, subtract, multiply, and divide functions and give appropriate domain and range restrictions	Algebra 1: SE/TE: 670-674, 684-689 Algebra 2: SE/TE: 398-404 TE: 404A
	AR.9-12.PRF.AIII. 2.3 (PRF.2.AIII.3) Simplify, add, subtract, multiply, and divide with rational expressions	Algebra 1: SE/TE: 670-674, 684-689 Algebra 2: SE/TE: 398-404 TE: 404A
CC.9-12.A.CED. 1 Create equations that describe numbers or relationship. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*	AR.9-12.SEI.AI.2.1 (SEI.2.AI.1) Solve multi-step equations and inequalities with rational coefficients: -- numerically (from a table or guess and check), -- algebraically (including the use of manipulatives), -- graphically, -- technologically	Algebra 1: SE/TE: 94-100, 186-192 TE: 100A, 192A Algebra 2: SE/TE: 27-32, 33-40 TE: 32B, 40B
	AR.9-12.LEI.AII.2.1 (LEI.2.AII.1) Solve, with and without appropriate technology, absolute value equations and inequalities written in one or two variables, and graph solutions.	Algebra 1: SE/TE: 207-213 Geometry: SE/TE: 892 Algebra 2: SE/TE: 41-48, 107-113 TE: 48A, 90A, 113A

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.A.CED. 1 Create equations that describe numbers or relationship. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and	AR.9-12.QEF.AII.3.6 (QEF.3.AII.6) Apply the concepts of quadratic equations and functions to model real world situations by using appropriate technology when needed	Algebra 1: SE/TE: 563, 570-571, 578, 584 Geometry: SE/TE: TE: 439 Algebra 2: SE/TE: 209-214 TE: 214A
	AR.9-12.ELF.AII.5.4 (ELF.5.AII.4) Recognize and solve problems that can be modeled using exponential functions	Algebra 1: SE/TE: 455, 461-465, 591 Algebra 2: SE/TE: 436-440, 471, 474-476 TE: 441A Lesson Resources
	AR.9-12.LF.AC.2.1 (LF.2.AC.1) Create, given a graph without an explicit formula, a written or oral interpretation of the relationship between the independent and dependent variables	Algebra 1: SE/TE: 240-244, 246-251 TE: 245A, 251A Lesson Resources Algebra 2: SE/TE: 94-98, 211-213, 331-337, TE: 98A Lesson Resources, 338A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
simple rational and exponential functions.*	AR.9-12.SEI.AC.3.6 (SEI.3.AC.6) SLE 6. Apply linear, piece-wise and step functions to real world situations that involve a combination of rates, proportions and percents such as sales tax, simple interest, social security, constant depreciation and appreciation, arithmetic sequences, constant rate of change, income taxes, postage, utility bills, commission, and traffic tickets	Algebra 1: SE/TE: 8, 169, 249-242, 348, 462 Algebra 2: SE/TE: 64, 84, 90-91, 576
	AR.9-12.ELF.PCT.2.3 (ELF.2.PCT.3) Solve graphically, algebraically and numerically, with and without appropriate technology, equations and real world problems involving exponential and logarithmic expressions	Algebra 1: SE/TE: 460-464 Algebra 2: SE/TE: 437, 469-476, 477, 478- 483 TE: 476A Lesson Resources, 483A Lesson Resources
	AR.9-12.SEI.AI. 2.4 (SEI.2.AI.4) Solve and graph simple absolute value equations and inequalities	Algebra 1: SE/TE: 207-212 Geometry: TE: 892 Algebra 2: SE/TE: 41-48 TE: 48A Lesson Resources
(Continued) CC.9-12.A.CED. 1 Create equations that describe numbers or relationship. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*	AR.9-12.PRF.AIII. 2.4 (PRF.2.AIII.4) Describe, with and without appropriate technology, the fundamental characteristics of rational functions: zeros, discontinuities (including vertical asymptotes), and end behavior (including horizontal asymptotes)	Algebra 1: SE/TE: 705-712 TE: 712A Lesson Resources Algebra 2: SE/TE: 282-283, 435, 515-523, 524-525 TE: 523A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.A.CED. 2 Create equations that describe numbers or relationship. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*	AR.9-12.CGT.G.5.2 (CGT.5.G.2) Write the equation of a line parallel to a line through a given point not on the line	Algebra 1: SE/TE: 330,332 Geometry: SE/TE: 197-204 Algebra 2: SE/TE: 85
	AR.9-12.CGT.G.5.3 (CGT.5.G.3) Write the equation of a line perpendicular to a line through a given point	Algebra 1: SE/TE: 331,332 Geometry: SE/TE: 198, 199, 202 TE: 204A Lesson Resources Algebra 2: SE/TE: 85
	AR.9-12.QEF.AII.3.5 (QEF.3.AII.5) Develop and analyze, with and without appropriate technology, quadratic relations: -- graph a parabolic relationship when given its equation -- write an equation when given its roots (zeros or solutions) or graph -- determine the nature of the solutions graphically and by evaluating the discriminant -- determine the maximum or minimum values and the axis of symmetry both graphically and algebraically	Algebra 1: SE/TE: 546-552, 553-558, 561- 562, 582-588 TE: 552A Lesson Resources, 558A Lesson Resources Algebra 2: SE/TE: 194-201, 203-204, 209- 211, 232, 242-243, 268
CC.9-12.A.CED. 2 Create equations that describe numbers or relationship. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*	AR.9-12.QEF.AII.3.6 (QEF.3.AII.6) Apply the concepts of quadratic equations and functions to model real world situations by using appropriate technology when needed	Algebra 1: SE/TE: 563, 570-571, 578,584 Geometry: TE: 439 Algebra 2: SE/TE: 209-214 TE: 214A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.A.CED. 2 Create equations that describe numbers or relationship. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*	AR.9-12.PRF.AII.4.2 (PRF.4.AII.2) Analyze and sketch, with and without appropriate technology, the graph of a given polynomial function, determining the characteristics of domain and range, maximum and minimum points, end behavior, zeros, multiplicity of zeros, \mathbf{y} intercept, and symmetry	Algebra 1: SE/TE: 546-551, 553-558 Algebra 2: SE/TE: 76, 107, 194-196, 268, 291, 292, 622
	AR.9-12.PRF.AII.4.3 (PRF.4.AII.3) Write the equation of a polynomial function given its roots	Algebra 1: SE/TE: 573 Algebra 2: SE/TE: 232
	AR.9-12.PRF.AII.4.4 (PRF.4.AII.4) Identify the equation of a polynomial function given its graph or table	Algebra 1: SE/TE: 240-245, 247-251 TE: 245A, 251A Lesson Resources Algebra 2: SE/TE: 283-284
	AR.9-12.ELF.AII.5.2 (ELF.5.AII.2) Graph exponential functions and identify key characteristics: domain, range, intercepts, asymptotes, and end behavior	Algebra 1: SE/TE: 455, 460-463 Algebra 2: SE/TE: 434-441, 442-450 TE: 441A, 450A Lesson Resources
	AR.9-12.ELF.AII.5.4 (ELF.5.AII.4) Recognize and solve problems that can be modeled using exponential functions	Algebra 1: SE/TE: 455, 461-465, 591 Algebra 2: SE/TE: 434,-440, 448-449, 471
	AR.9-12.LQF.AIII.1.2 (LQF.1.AIII.2) Develop, write, and graph, with and without appropriate technology, equations of lines in slopeintercept, point-slope, and standard forms given:	Algebra 1: SE/TE: 308-313,315-320, 322- 329 TE: 314A Lesson Resources, 320A Lesson Resources, 328A Lesson Resources
	-- a point and the slope, -- two points, -- real world data	Geometry: SE/TE: 189-195 TE: 196A Lesson Resources Algebra 2: SE/TE: 74-80, 81-88 TE: 80A, 88A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.A.CED. 3 Create equations that describe numbers or relationship. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.*	AR.9-12.LQF.AIII.1.3 (LQF.1.AIII.3) Develop, write, and graph, given a point and the slope, two points, or a point and a line, the equation of: -- a parallel line -- a perpendicular line -- the perpendicular bisector of a line segment	Algebra 1: SE/TE: 330-335 TE: 335A Lesson Resources Geometry: SE/TE: 197-204 TE: 204A Lesson Resources Algebra 2: SE/TE: 85
	AR.9-12.LF.AC.2.7 (LF.2.AC.7) Write an equation given: -- two points, -- a point and y-intercept, -- an x-intercept and y intercept, -- a point and slope, -- a table of data, -- the graph of a line	```Algebra 1: SE/TE: 336-343, 308-313, 315- 320, 322-329 TE:343A, 314A, 320A, 328A Lesson Resources Geometry: SE/TE: 189-195 TE: 196A Lesson Resources Algebra 2: SE/TE: 77-80, 81-88 TE: 88A, 80A Lesson Resources```
	AR.9-12.C.PCT.3.1 (C.3.PCT.1) Identify, graph, write, and analyze equations of conic sections, using properties such as symmetry, intercepts, foci, asymptotes, and eccentricity, and when appropriate, use technology	Algebra 2: SE/TE: 614-620, 622-629, 630- 636, 638-644, 645-652, 653-660 TE: 620A, 621, 629A, 636A, 644A, 652A, 660A
	AR.9-12.LQF.AIII.1.7 (LQF.1.AIII.7) Solve, with and without appropriate technology, systems of linear and quadratic equations and inequalities with two or more variables	Algebra 1: SE/TE: 364-369, 372-377, 378- 384, 400-405, 596-601 TE:369A, 377A, 384A, 405A, 601A Lesson Resources Algebra 2: SE/TE: 258-264, TE: 264A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
	AR.9-12.LEI.AII. 2.2 (LEI.2.AII.2) Solve, with and without appropriate technology, systems of linear equations with two variables and graph the solution set	Algebra 1: SE/TE: 364-369 TE: 369A Lesson Resources Geometry: SE/TE: 257 Algebra 2: SE/TE: 134-141, 142-148 TE: 141A, 148A Lesson Resources
	AR.9-12.LEI.AII. 2.4 (LEI.2.AII.4) Solve, with and without appropriate technology, systems of linear equations with *three variables using algebraic methods, including matrices	Algebra 2: SE/TE: 166-173 TE: 173A Lesson Resources
	AR.9-12.LEI.AII. 2.5 (LEI.2.AII.5) Apply, with or without technology, the concepts of linear and absolute value equations and inequalities and systems of linear equations and inequalities to model real world situations including linear programming	Algebra 1: SE/TE: 387-392 TE: 392A Lesson Resources Algebra 2: SE/TE: 157-162 TE: 162A Lesson Resources
(Continued) CC.9-12.A.CED. 3 Create equations that describe numbers or relationship. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.*	AR.9-12.RF.AII.1.5 (RF.1.AII.5) Graph, with and without appropriate technology, functions defined as piece-wise and step	Algebra 1: SE/TE: 348 Algebra 2: SE/TE: 90-91
	AR.9-12.OP.TDM.2.1 (OP.2.TDM.1) Graph systems of linear inequalities with multiple constraints and identify vertices of the feasible region	Algebra 1: SE/TE: 400-405 TE: 405A Lesson Resources Algebra 2: SE/TE: 157-162 TE: 162A Lesson Resources
	AR.9-12.C.PCT.3.2 (C.3.PCT.2) Solve, with and without appropriate technology, systems of equations and inequalities involving conics and other types of equations	Algebra 2: TE: 661

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.LQF.AIII.1.1 (LQF.1.AIII.1) Evaluate, add, subtract, multiply, divide and compose functions and determine appropriate domain and range restrictions	Algebra 1: SE/TE: 374, 388,4 02 TE: 405A Lesson Resources Algebra 2: SE/TE: 398-404 TE: 404A Lesson Resources
	AR.9-12.LQF.AIII.1.8 (LQF.1.AIII.8) Apply, with and without appropriate technology the concepts of functions to real world situations including linear programming	Algebra 1: SE/TE: 402-403 Algebra 2: SE/TE: 159-161
CC.9-12.A.CED. 4 Create equations that describe numbers or relationship. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.*	AR.9-12.SEI.AI.2.3 (SEI.2.AI.3) Solve linear formulas and literal equations for a specified variable	Algebra 1: SE/TE: 109-114 TE: 114A Lesson Resources Geometry: SE/TE: 698 Algebra 2: SE/TE: 28-31
(Continued) CC.9-12.A.CED. 4 Create equations that describe numbers or relationship. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.*	AR.9-12.SEI.AC.3.3 (SEI.3.AC.3) SLE 3. Solve linear formulas and literal equations for a specified variable	Algebra 1: SE/TE: 109-114 TE: 114A Lesson Resources Geometry: SE/TE: 698 Algebra 2: SE/TE: 28-31
CC.9-12.A.REI. 1 Understand solving equations as a process of reasoning and explain the reasoning. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable	AR.9-12.SEI.AI.2.1 (SEI.2.AI.1) Solve multi-step equations and inequalities with rational coefficients: -- numerically (from a table or guess and check), -- algebraically (including the use of manipulatives), -- graphically, -- technologically	Algebra 1: SE/TE: 94-100, 186-192 TE: 100A, 192A Algebra 2: SE/TE: 27-32, 33-40 TE: 32B, 40B Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
argument to justify a solution method.	AR.9-12.SEI.AC.3.1 (SEI.3.AC.1) SLE 1. Solve, with and without appropriate technology, multi-step equations and inequalities with rational coefficients numerically, algebraically and graphically	Algebra 1: SE/TE: 94-100, 186-192 TE: 100A, 192A Lesson Resources Algebra 2: SE/TE: 26-31 TE: 32A Lesson Resources
	AR.9-12.PRF.PCT.1.2 (PRF.1.PCT.2) Solve, with and without appropriate technology, polynomial equations utilizing techniques such as Descartes' Rule of Signs, upper and lower bounds, Intermediate Value Theorem and Rational Root Theorem	Algebra 2: SE/TE: 315-317 TE: 317A Lesson Resources
CC.9-12.A.REI. 2 Understand solving equations as a process of reasoning and explain the reasoning. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	No Matches in Arkansas Frameworks	Algebra 1: SE/TE: 633-638, 691-697 TE: 638A, 697A Lesson Resources Algebra 2: SE/TE: 390-397, 542-548 TE: 397A, 548A
CC.9-12.A.REI. 3 Solve equations and inequalities in one variable. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	AR.9-12.SEI.AI.2.1 (SEI.2.AI.1) Solve multi-step equations and inequalities with rational coefficients: -- numerically (from a table or guess and check), -- algebraically (including the use of manipulatives), -- graphically, -- technologically	Algebra 1: SE/TE: 94-100, 186-192 TE: 100A, 192A Lesson Resources Algebra 2: SE/TE: 27-32, 33-40 TE: 32B, 40B Lesson Resources
	AR.9-12.SEI.AC.3.1 (SEI.3.AC.1) SLE 1. Solve, with and without appropriate technology, multi-step equations and inequalities with rational coefficients numerically, algebraically and graphically	Algebra 1: SE/TE: 94-100, 186-192 TE: 100A, 192A Lesson Resources Algebra 2: SE/TE: 27-32, 33-40 TE: 32B, 40B Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

$\begin{array}{c}\text { Common Core State Standards } \\ \text { for Mathematics }\end{array}$	$\begin{array}{l}\text { Arkansas Student } \\ \text { Learning Expectations } \\ \text { for Mathematics }\end{array}$	$\begin{array}{l}\text { Pearson Algebra 1, Geometry, } \\ \text { Algebra 2, Common Core } \\ \text { C2012 }\end{array}$
	$\begin{array}{l}\text { AR.9-12.SEI.AI.2.3 } \\ \text { (SEI.2.AI.3) Solve linear } \\ \text { formulas and literal equations } \\ \text { for a specified variable }\end{array}$	$\begin{array}{l}\text { Algebra 1: } \\ \text { SE/TE: 109-114 } \\ \text { TE: 114A Lesson Resources }\end{array}$
		$\begin{array}{l}\text { Geometry: } \\ \text { SE/TE: 698 }\end{array}$
		$\begin{array}{l}\text { Algebra 2: }\end{array}$
SE/TE: 28-31		

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
(Continued) CC.9-12.A.REI. 4 Solve equations and inequalities in one variable. Solve quadratic equations in one variable.	AR.9-12.QEF.AII.3.5 (QEF.3.AII.5) Develop and analyze, with and without appropriate technology, quadratic relations: -- graph a parabolic relationship when given its equation -- write an equation when given its roots (zeros or solutions) or graph -- determine the nature of the solutions graphically and by evaluating the discriminant -- determine the maximum or minimum values and the axis of symmetry both graphically and algebraically	Algebra 1: SE/TE: 546-552, 553-558, 561- 562, 582-588 TE: 552A Lesson Resources, 558A Lesson Resources Algebra 2: SE/TE: 194-201, 242-243, 232 TE: 201A Lesson Resources
	AR.9-12.LQF.AIII.1.5 (LQF.1.AIII.5) Solve, with and without appropriate technology, quadratic equations by: -- extracting the square root, -- graphing, -- factoring, -- completing the square, -- using the quadratic formula	Algebra 1: SE/TE: 561-564, 568-572, 576- 580, 582-588 TE: 572A Lesson Resources, 581A Lesson Resources, 588A Lesson Resources Algebra 2: SE/TE: 219-223, 226-231, 233- 239 TE: 239A, 231A Lesson Resources
	AR.9-12.NF.AC.4.3 (NF.4.AC.3) Solve, with and without appropriate technology, quadratic equations with real number solutions using factoring and the quadratic formula	Algebra 1: SE/TE: 568-572, 582-588 Algebra 2: SE/TE: 226-229, 240-247 TE: 247A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.NLF.AI.4.3 (NLF.4.AI.3) Solve quadratic equations using the appropriate methods with and without technology: -- factoring, -- quadratic formula with real number solutions	Algebra 1: SE/TE: 582-588, 568-569 TE: 588A Lesson Resources Algebra 2: SE/TE: 226-229, 240-247 TE: 247A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
	AR.9-12.QEF.AII.3.5 (QEF.3.AII.5) Develop and analyze, with and without appropriate technology, quadratic relations: -- graph a parabolic relationship when given its equation -- write an equation when given its roots (zeros or solutions) or graph -- determine the nature of the solutions graphically and by evaluating the discriminant -- determine the maximum or minimum values and the axis of symmetry both graphically and algebraically	Algebra 1: SE/TE: 546-552, 553-558, 561- 562, 582-588 TE: 552A Lesson Resources, 558A Lesson Resources Algebra 2: SE/TE: 194-201, 242-243, 232 TE: 201A Lesson Resources
CC.9-12.A.REI.4b Solve quadratic equations by inspection (e.g., for $x^{\wedge} 2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a \pm bi for real	AR.9-12.QEF.AII.3.3 (QEF.3.AII.3) Analyze and solve quadratic equations with and without appropriate technology by: -- factoring, -- graphing, -- extracting the square root, -- completing the square, -- using the quadratic formula	Algebra 1: SE/TE: 582-588 TE: 588A Lesson Resources Geometry: TE: 439 Algebra 2: SE/TE: 216-223, 226-231, 233- 239, 240-247 TE: 223A, 231A, 239A, 247A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
numbers a and b. (Continued) CC.9-12.A.REI.4b Solve quadratic equations by inspection (e.g., for $x^{\wedge} 2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a \pm bi for real numbers a and b.	AR.9-12.QEF.AII.3.5 (QEF.3.AII.5) Develop and analyze, with and without appropriate technology, quadratic relations: -- graph a parabolic relationship when given its equation -- write an equation when given its roots (zeros or solutions) or graph -- determine the nature of the solutions graphically and by evaluating the discriminant -- determine the maximum or minimum values and the axis of symmetry both graphically and algebraically	Algebra 1: SE/TE: 546-552, 553-558, 561- 562, 582-588 TE: 552A Lesson Resources, 558A Lesson Resources Algebra 2: SE/TE: 194-201, 242-243, 232 TE: 201A Lesson Resources
	AR.9-12.LQF.AIII.1.5 (LQF.1.AIII.5) Solve, with and without appropriate technology, quadratic equations by: -- extracting the square root, -- graphing, -- factoring, -- completing the square, -- using the quadratic formula	Algebra 1: SE/TE: 561-564, 568-572, 576- 580, 582-588 TE: 572A Lesson Resources, 581A Lesson Resources, 588A Lesson Resources Algebra 2: SE/TE: 219-223, 226-231, 233- 239, 252-253 TE: 239A, 231A Lesson Resources
	AR.9-12.NF.AC.4.3 (NF.4.AC.3) Solve, with and without appropriate technology, quadratic equations with real number solutions using factoring and the quadratic formula	```Algebra 1: SE/TE: 568-572, 582-588 Algebra 2: SE/TE: 226-229, 240-247, 252- 253 TE: 247A Lesson Resources```

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.A.REI. 5 Solve systems of equations. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	AR.9-12.LEI.AII. 2.2 (LEI.2.AII.2) Solve, with and without appropriate technology, systems of linear equations with two variables and graph the solution set	Algebra 1: SE/TE: 364-369 TE: 369A Lesson Resources Geometry: TE: 257 Algebra 2: SE/TE: 134-141, 142-148 TE: 141A, 148A Lesson Resources
	AR.9-12.SEI.AI.2.2 (SEI.2.AI.2) Solve systems of two linear equations: -- numerically (from a table or guess and check), -- algebraically (including the use of manipulatives), -- graphically, -- technologically	Algebra 1: SE/TE: 364-369, 372-377, 378- 384 TE: 369A, 377A, 384A Lesson Resources Geometry: TE: 257 Algebra 2: SE/TE: 134-141, 142-148 TE: 141A, 148A Lesson Resources
	AR.9-12.LQF.AIII.1.7 (LQF.1.AIII.7) Solve, with and without appropriate technology, systems of linear and quadratic equations and inequalities with two or more variables	Algebra 1: SE/TE: 364-369, 372-377, 378- 384, 400-405, 596-601 TE: 369A, 377A, 384A, 405A, 601A Lesson Resources Algebra 2: SE/TE: 258-264, TE: 264A Lesson Resources
(Continued) CC.9-12.A.REI. 5 Solve systems of equations. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	AR.9-12.SEI.AC.3.2 (SEI.3.AC.2) SLE 2. Solve, with and without appropriate technology, systems of two linear equations and systems of two inequalities numerically, algebraically and graphically	Algebra 1: SE/TE: 364-368, 372-376, 378- 383, 400-404 TE: 363A, 369A, 377A Lesson Resources Algebra 2: SE/TE: 134-141, 142-148, 157162 TE: 162A, 141A, 148A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

$\begin{array}{l}\text { Common Core State Standards } \\ \text { for Mathematics }\end{array}$	$\begin{array}{l}\text { Arkansas Student } \\ \text { Learning Expectations } \\ \text { for Mathematics }\end{array}$	$\begin{array}{l}\text { Pearson Algebra 1, Geometry, } \\ \text { Algebra 2, Common Core } \\ \text { ©2012 }\end{array}$		
$\begin{array}{l}\text { CC.9-12.A.REI.6 Solve systems } \\ \text { of equations. Solve systems of } \\ \text { linear equations exactly and } \\ \text { approximately (e.g., with } \\ \text { graphs), focusing on pairs of } \\ \text { linear equations in two } \\ \text { variables. }\end{array}$	$\begin{array}{l}\text { AR.9-12.LEI.AII.2.2 } \\ \text { (LEI.2.AII.2) Solve, with and } \\ \text { without appropriate } \\ \text { technology, systems of linear } \\ \text { equations with two variables } \\ \text { and graph the solution set }\end{array}$	$\begin{array}{l}\text { Algebra 1: } \\ \text { SE/TE: 364-369 }\end{array}$		
TE: 369A Lesson Resources				
SE/TE: 257			$]$	Algebra 2:
:---				

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.A.REI.7 Solve systems of equations. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y $=-3 x$ and the circle $\mathbf{x \wedge 2 ~ + ~}$	AR.9-12.LQF.AIII.1.7 (LQF.1.AIII.7) Solve, with and without appropriate technology, systems of linear and quadratic equations and inequalities with two or more variables	Algebra 1: SE/TE: 364-369, 372-377, 378- 384, 400-405, 596-601 TE: 369A, 377A, 384A, 405A, 601A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.LEI.AII.2.5 (LEI.2.AII.5) Apply, with or without technology, the concepts of linear and absolute value equations and inequalities and systems of linear equations and inequalities to model real world situations including linear programming	Algebra 1: SE/TE: 387-392 TE: 392A Lesson Resources
SE/TE: 157-162		
TE: 162A Lesson Resources, 163		

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
and solve equations and inequalities graphically. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	AR.9-12.LEI.AII.2.4 (LEI.2.AII.4) Solve, with and without appropriate technology, systems of linear equations with *three variables using algebraic methods, including matrices	Algebra 2: SE/TE: 166-173, 796 TE: 173A, 800A, 800B Lesson Resources
	AR.9-12.MA.TDM.1.2 (MA.1.TDM.2) Solve real-world problems involving systems of linear equations using matrices (e.g., inverses, augmented, Cramer's rule)	Algebra 2: SE/TE: 175-181, 795-796 TE: 181A Lesson Resources
	AR.9-12.MA.TDM.1.3 (MA.1.TDM.3) Find and use the inverse of a matrix to solve real-world problems (e.g., cryptology)	Algebra 2: SE/TE: 787, 796
	AR.9-12.LSM.TFM.1.2 (LSM.1.TFM.2) Find and use the inverse of a matrix to solve real-world problems (e.g., cryptology)	Algebra 2: SE/TE: 787, 796
	AR.9-12.LEI.AII.2.1 (LEI.2.AII.1) Solve, with and without appropriate technology, absolute value equations and inequalities written in one or two variables, and graph solutions.	Algebra 1: SE/TE: 207-213 Geometry: TE: 892 Algebra 2: SE/TE: 41-48, 107-113 TE: 48A, 90A, 113A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.A.REI. 10 Represent and solve equations and inequalities graphically. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	AR.9-12.QEF.AII.3.3 (QEF.3.AII.3) Analyze and solve quadratic equations with and without appropriate technology by: -- factoring, -- graphing, -- extracting the square root, -- completing the square, -- using the quadratic formula	Algebra 1: SE/TE: 561-564, 568-572, 576- 580, 582-588 TE: 572A Lesson Resources, 581A Lesson Resources, 588A Lesson Resources Geometry: TE:439 Algebra 2: SE/TE: 216-223, 226-231, 233- 239, 240-247 TE: 223A, 231A, 239A, 247A Lesson Resources
	AR.9-12.PRF.AII.4.2 (PRF.4.AII.2) Analyze and sketch, with and without appropriate technology, the graph of a given polynomial function, determining the characteristics of domain and range, maximum and minimum points, end behavior, zeros, multiplicity of zeros, \mathbf{y} intercept, and symmetry	Algebra 1: SE/TE: 546-551, 553-558 Algebra 2: SE/TE: 76,107, 194-196, 268,291, 292, 622
	AR.9-12.ELF.AII.5.2 (ELF.5.AII.2) Graph exponential functions and identify key characteristics: domain, range, intercepts, asymptotes, and end behavior	Algebra 1: SE/TE: 455, 460-463 Algebra 2: SE/TE: 434-441, 442-450 TE: 441A, 450A Lesson Resources
	AR.9-12.SEI.AC.3.1 (SEI.3.AC.1) SLE 1. Solve, with and without appropriate technology, multi-step equations and inequalities with rational coefficients numerically, algebraically and graphically	Algebra 1: SE/TE: 364-369, 387-392 Algebra 2: SE/TE: 26-31 TE: 32A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.A.REI. 11 Represent and solve equations and inequalities graphically. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and y $=g(x)$ intersect are the solutions of the equation $f(x)$ $=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*	AR.9-12.SEI.AI.2.2 (SEI.2.AI.2) Solve systems of two linear equations: -- numerically (from a table or guess and check), -- algebraically (including the use of manipulatives), -- graphically, -- technologically	Algebra 1: SE/TE: 364-369, 372-377, 378- 384 TE: 369A, 377A, 384A Lesson Resources, 371, 370 Geometry: SE/TE: 257 Algebra 2: SE/TE: 134-141, 142-148 TE: 141A, 148A Lesson Resources
	AR.9-12.ELF.AIII.3.3 (ELF.3.AIII.3) Solve, with and without appropriate technology, equations and real world problems involving exponential and logarithmic expressions graphically, algebraically and numerically	```Algebra 2: SE/TE: 437-440, 448-449, 480- 482 TE: 477```
	AR.9-12.LEI.AII.2.1 (LEI.2.AII.1) Solve, with and without appropriate technology, absolute value equations and inequalities written in one or two variables, and graph solutions.	Algebra 1: SE/TE: 207-213 Geometry: SE/TE: 892 Algebra 2: SE/TE: 41-48, 107-113 TE: 48A, 90A, 113A Lesson Resources
(Continued) CC.9-12.A.REI. 11 Represent and solve equations and inequalities graphically. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and y $=g(x)$ intersect are the solutions of the equation $f(x)$ $=g(x)$; find the solutions approximately, e.g., using	AR.9-12.LEI.AII. 2.2 (LEI.2.AII.2) Solve, with and without appropriate technology, systems of linear equations with two variables and graph the solution set	Algebra 1: SE/TE: 364-369 TE: 369A Lesson Resources Geometry: SE/TE: 257 Algebra 2: SE/TE: 134-141, 142-148 TE: 141A, 148A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*	AR.9-12.SEI.AC.3.2 (SEI.3.AC.2) SLE 2. Solve, with and without appropriate technology, systems of two linear equations and systems of two inequalities numerically, algebraically and graphically	Algebra 1: SE/TE: 364-368, 372-376, 378- 383, 400-404 TE: 363A, 369A, 377A Lesson Resources Algebra 2: SE/TE: 134-141, 142-148, 157162 TE: 162A, 163, 141A, 148A Lesson Resources
	AR.9-12.ELF.PCT.2.3 (ELF.2.PCT.3) Solve graphically, algebraically and numerically, with and without appropriate technology, equations and real world problems involving exponential and logarithmic expressions	Algebra 1: SE/TE: 460-464 Algebra 2: SE/TE: 437-440, 448-449, 480482 TE: 477

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
the corresponding half-planes.	AR.9-12.LEI.AII. 2.2 (LEI.2.AII.2) Solve, with and without appropriate technology, systems of linear equations with two variables and graph the solution set	Algebra 1: SE/TE: 364-369 TE:369A Lesson Resources Geometry: SE/TE: 257 Algebra 2: SE/TE: 134-141, 142-148 TE: 141A, 148A Lesson Resources
	AR.9-12.LEI.AII. 2.5 (LEI.2.AII.5) Apply, with or without technology, the concepts of linear and absolute value equations and inequalities and systems of linear equations and inequalities to model real world situations including linear programming	Algebra 1: SE/TE: 387-392 TE: 392A Lesson Resources Algebra 2: SE/TE: 157-162 TE: 162A Lesson Resources
	AR.9-12.SEI.AC.3.2 (SEI.3.AC.2) SLE 2. Solve, with and without appropriate technology, systems of two linear equations and systems of two inequalities numerically, algebraically and graphically	Algebra 1: SE/TE: 364-368, 372-376, 378- 383, 400-404 TE: 363A, 369A, 377A Lesson Resources Algebra 2: SE/TE: 134-141, 142-148, 157162 TE: 162A, 163, 141A, 148A Lesson Resources
(Continued) CC.9-12.A.REI. 12 Represent and solve equations and inequalities graphically. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict	AR.9-12.OP.TDM.2.1 (OP.2.TDM.1) Graph systems of linear inequalities with multiple constraints and identify vertices of the feasible region	Algebra 1: SE/TE: 400-405 TE: 405A Lesson Resources Algebra 2: SE/TE: 157-162 TE: 162A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	AR.9-12.LSM.TFM.1.3 (LSM.1.TFM.3) Graph systems of linear inequalities with multiple constraints and identify vertices of the feasible region	Algebra 2: SE/TE: 157-162 TE: 162A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	AR.9-12.LF.AI.3.2 (LF.3.AI.2) Determine domain and range of a relation from an algebraic expression, graphs, set of ordered pairs, or table of data	Algebra 1: SE/TE: 268-273 TE: 273A Lesson Resources Algebra 2: SE/TE: 60-67
	AR.9-12.LF.AI.3.3 (LF.3.AI.3) Know and/or use function notation, including evaluating functions for given values in their domain	Algebra 1: SE/TE: 263, 269 Algebra 2: SE/TE: 63-65
	AR.9-12.RF.AII.1.1 (RF.1.AII.1) Determine, with or without technology, the domain and range of a relation defined by a graph, a table of values, or a symbolic equation including those with restricted domains and whether a relation is a function	Algebra 1: SE/TE: 268-271 Algebra 2: SE/TE: 60-67 TE: 67A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
use function notation in terms of a context.	AR.9-12.NF.AC.4.5 (NF.4.AC.5) Identify and apply nonlinear functions to real world situations such as acceleration, area, volume, population, bacteria, compound interest, percent depreciation and appreciation, amortization, geometric	Algebra 1: SE/TE: 236, 238, 244, 245, 250, 251, 258, 262, 264, 265, 266,
sequences, etc.		

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
Fibonacci sequence is defined recursively by $f(0)=f(1)=1$, $f(n+1)=f(n)+f(n-1)$ for $n \geq$ 1 (n is greater than or equal to 1).	AR.9-12.PI.CM.3.2 (PI.3.CM.2) Create functions using recursions and loops.	Algebra 1: SE/TE: 275, 469 Algebra 2: SE/TE: 572, 580
	AR.9-12.SS.PCT.4.4 (SS.4.PCT.4) Determine the nth term of a sequence given a rule or specific terms and use appropriate technology when needed	Algebra 1: SE/TE: 274-276, 467-469 Algebra 2: SE/TE: 573, 575, 581
	AR.9-12.SS.AIII.4.4 (SS.4.AIII.4) Determine, with and without appropriate technology, the nth term of a sequence given a rule or specific terms	Algebra 1: SE/TE: 274-276, 467-469 Algebra 2: SE/TE: 573, 575, 581, 584

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*	AR.9-12.RF.AII.1.7 (RF.1.AII.7) Investigate and identify key characteristics of period functions and their graphs (period, amplitude, maximum, and minimum)	Algebra 2: SE/TE: 853-854, 856, 862, 865
	AR.9-12.RF.AII.1.8 (RF.1.AII.8) Use basic properties of frequency and amplitude to solve problems	Algebra 2: SE/TE: 851-858, 861-867
	AR.9-12.PRF.AIII.2.2 (PRF.2.AIII.2) Investigate and sketch the graphs of polynomial and rational functions using the characteristics of domain and range, upper and lower bounds, maximum and minimum points, asymptotes and end behavior, zeros, multiplicity of zeros, \mathbf{y} intercepts, and symmetry with and without appropriate technology	Algebra 1: SE/TE: 546-551, 553-558, 705- 712 TE: 558A Lesson Resources, 712A Lesson Resources Algebra 2: SE/TE: 280-287, 515-523 TE: 287A, 523A Lesson Resources
	AR.9-12.RF.AII.1.9 (RF.1.AII.9) Apply the concepts of functions to real world situations	Algebra 1: SE/TE: 348 Algebra 2: SE/TE: 436-440, 471, 474-476, 855, 857, 858, 863, 864, 866 TE: 441A Lesson Resources
(Continued) CC.9-12.F.IF. 4 Interpret functions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables	AR.9-12.LF.AI.3.5 (LF.3.AI.5) Interpret the rate of change/slope and intercepts within the context of everyday life	Algebra 1: SE/TE: 294-300 TE: 300A Lesson Resources Algebra 2: SE/TE: 74-80, 81-88 TE: 80A, 88A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*	AR.9-12.LF.AI.3.8 (LF.3.AI.8) *Write an equation in slopeintercept, point-slope, and standard forms given: -- two points, -- a point and y-intercept, -- x-intercept and y-intercept, -- a point and slope, -- a table of data, -- the graph of a line	Algebra 1: SE/TE: 308-313, 315-320, 322329 TE: 314A, 320A, 328A Lesson Resources Algebra 2: SE/TE: 74-80, 81-88 TE: 80A, 88A Lesson Resources
	AR.9-12.NLF.AI.4.2 (NLF.4.AI.2) Determine minimum, maximum, vertex, and zeros, given the graph	Algebra 1: SE/TE: 546-551, 553-558 Algebra 2: SE/TE: 194-196, 290-292
	AR.9-12.PRF.AII.4.2 (PRF.4.AII.2) Analyze and sketch, with and without appropriate technology, the graph of a given polynomial function, determining the characteristics of domain and range, maximum and minimum points, end behavior, zeros, multiplicity of zeros, \mathbf{y} intercept, and symmetry	Algebra 1: SE/TE: 546-551, 553-558 Algebra 2: SE/TE: 280-287, 288-295 TE: 287A, 295A Lesson Resources
	AR.9-12.PRF.AII.4.5 (PRF.4.AII.5) Identify the characteristics of graphs of power functions of the form $f(x)=a x^{\wedge} n$, for negative integral values of n, including domain, range, end behavior, and behavior at $x=0$, and compare these characteristics to the graphs of related positive integral power functions	Algebra 2: SE/TE: 339-345 TE: 345A Lesson Resources
(Continued) CC.9-12.F.IF. 4 Interpret functions that arise in applications in terms of the	AR.9-12.ELF.AII.5.1 (ELF.5.AII.1) Recognize the graphs of exponential functions distinguishing between growth and decay	Algebra 1: SE/TE: 460-464 Algebra 2: SE/TE: 434-441 TE: 441A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* end behavior; and periodicity.*	AR.9-12.ELF.AII.5.2 (ELF.5.AII.2) Graph exponential functions and identify key characteristics: domain, range, intercepts, asymptotes, and end behavior	Algebra 1: SE/TE: 453-458, 460-464 Algebra 2: SE/TE: 442-450 TE: 450A Lesson Resources
	AR.9-12.LF.AC.2.1 (LF.2.AC.1) Create, given a graph without an explicit formula, a written or oral interpretation of the relationship between the independent and dependent variables	Algebra 1: SE/TE: 240-244 Algebra 2: SE/TE: 60-67
	AR.9-12.OP.TDM.2.4 (OP.2.TDM.4) Model and solve real-world problems involving optimization of area and volume	Algebra 2: SE/TE: 294
	AR.9-12.C.PCT.3.1 (C.3.PCT.1) Identify, graph, write, and analyze equations of conic sections, using properties such as symmetry, intercepts, foci, asymptotes, and eccentricity, and when appropriate, use technology	Algebra 2: SE/TE: 614-620, 622-629, 630- 636, 638-644, 645-652, 653-660 TE: 620A, 621, 629A, 636A, 644A, 652A, 660A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
(Continued) CC.9-12.F.IF. 4 Interpret functions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*	AR.9-12.PRF.PCT.1.1 (PRF.1.PCT.1) Investigate and sketch, with and without appropriate technology, the graphs of polynomial and rational functions using the characteristics of domain and range, upper and lower bounds, maximum and minimum points, asymptotes and end behavior, zeros, multiplicity of zeros, \mathbf{y} intercepts, and symmetry	Algebra 1: SE/TE: 546-551, 553-558, 705- 712 TE: 558A Lesson Resources, 712A Lesson Resources Algebra 2: SE/TE: 281-283, 289-292, 515- 520
	AR.9-12.PRF.PCT.1.4 (PRF.1.PCT.4) Apply the concepts of polynomial and rational functions to model real world situations using appropriate technology when needed	Algebra 1: SE/TE: 551, 552, 565, 570, 571 Algebra 2: SE/TE: 331-338, 520, 521, 544, 547 TE: 338A Lesson Resources
CC.9-12.F.IF. 5 Interpret functions that arise in applications in terms of the context. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble \mathbf{n} engines in a factory, then the positive integers would be an appropriate domain for the function.*	AR.9-12.LF.AI.3.2 (LF.3.AI.2) Determine domain and range of a relation from an algebraic expression, graphs, set of ordered pairs, or table of data	Algebra 1: SE/TE: 268-273 TE: 273A Lesson Resources Algebra 2: SE/TE: 62, 334, 398-399, 408- 411 TE: 425
	AR.9-12.LF.AI.3.3 (LF.3.AI.3) Know and/or use function notation, including evaluating functions for given values in their domain	Algebra 1: SE/TE: 263, 269 Algebra 2: SE/TE: 63-65, 70, 407
	AR.9-12.RF.AII.1.1 (RF.1.AII.1) Determine, with or without technology, the domain and range of a relation defined by a graph, a table of values, or a symbolic equation including those with restricted domains and whether a relation is a function	Algebra 1: SE/TE: 268-271 Algebra 2: SE/TE: 60-67 TE: 67A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.F.IF.5 Interpret functions that arise in applications in terms of the context. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*	AR.9-12.LF.AC.2.4 (LF.2.AC.4) Interpret the rate of change	Algebra 1: (slope) and intercepts within the context of everyday life

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.F.IF. 6 Interpret functions that arise in applications in terms of the context. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*	AR.9-12.LF.TM.1.2 (LF.1.TM.2) Determine the initial condition and the rate of change in realworld situations described by $y=m x+b$	Algebra 1: SE/TE: 311-314 Algebra 2: SE/TE: 93-98
CC.9-12.F.IF. 7 Analyze functions using different representations. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*	AR.9-12.LF.TM.1.4 (LF.1.TM.4) Explain, conjecture, summarize, and defend results orally, in writing and through the use of appropriate technology	```Algebra 1: SE/TE: 270-271, 248, 250, 450, 455, 458, 600, 607, 617, 624, 637,642 \\ Algebra 2: \\ SE/TE: 92-98, 180, 227, 887```
	AR.9-12.EF.TM.2.6 (EF.2.TM.6) Explain, conjecture, summarize, and defend results orally, in writing, and through the use of appropriate technology	```Algebra 1: SE/TE: 270-271, 248, 250, 450, 455, 458, 600, 607, 617, 624, 637,642 \\ Algebra 2: \\ SE/TE: 92-98, 180, 227, 887```
	AR.9-12.MM.TM.3.4 (MM.3.TM.4) Explain, conjecture, summarize, and defend results orally, in writing, and through the use of appropriate technology	Algebra 1: SE/TE: 270-271, 248, 250, 450, 455, 458, 600, 607, 617, 624, 637, 642 Algebra 2: SE/TE: 92-98, 180, 227, 887
CC.9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.*	AR.9-12.QEF.AII.3.3 (QEF.3.AII.3) Analyze and solve quadratic equations with and without appropriate technology by: -- factoring, -- graphing, -- extracting the square root, -- completing the square, -- using the quadratic formula	Algebra 1: SE/TE: 561-564, 568-572, 576- 580, 582-588 TE: 572A Lesson Resources, 581A Lesson Resources, 588A Lesson Resources Geometry: SE/TE: TE: 439 Algebra 2: SE/TE: 216-223, 226-231, 233- 239, 240-247 TE: 223A, 231A, 239A, 247A

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.*	AR.9-12.QEF.AII.3.6 (QEF.3.AII.6) Apply the concepts of quadratic equations and functions to model real world situations by using appropriate technology when needed	Algebra 1: SE/TE: 563, 570-571, 578, 584 SE/TE: 331-337 TE: 338A
	AR.9-12.NLF.AI.4.2 (NLF.4.AI.2) Determine minimum, maximum, vertex, and zeros, given the graph	Algebra 2:
SE/TE: 194-196, 290-292		

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
(Continued) CC.9-12.F.IF.7c Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.*	AR.9-12.PRF.AIII.2.2 (PRF.2.AIII.2) Investigate and sketch the graphs of polynomial and rational functions using the characteristics of domain and range, upper and lower bounds, maximum and minimum points, asymptotes and end behavior, zeros, multiplicity of zeros, y intercepts, and symmetry with and without appropriate technology	Algebra 1: SE/TE: 546-551, 553-558, 705- 712 TE: 558A Lesson Resources, 712A Lesson Resources Geometry: SE/TE: 257 Algebra 2: SE/TE: 134-141, 142-148 TE: 141A, 148A Lesson Resources
	AR.9-12.PRF.PCT.1.1 (PRF.1.PCT.1) Investigate and sketch, with and without appropriate technology, the graphs of polynomial and rational functions using the characteristics of domain and range, upper and lower bounds, maximum and minimum points, asymptotes and end behavior, zeros, multiplicity of zeros, y intercepts, and symmetry	Algebra 1: SE/TE: 546-551, 553-558, 705712 TE: 558A Lesson Resources, 712A Lesson Resources Algebra 2: SE/TE: 281-283, 289-292, 515- 520
	AR.9-12.PRF.AIII. 2.4 (PRF.2.AIII.4) Describe, with and without appropriate technology, the fundamental characteristics of rational functions: zeros, discontinuities (including vertical asymptotes), and end behavior (including horizontal asymptotes)	Algebra 1: SE/TE: 705-712 TE: 712A Lesson Resources Algebra 2: SE/TE: 282-283,435,515-523, $524-525$ TE: 523A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
(Continued) CC.9-12.F.IF.7c Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.*	AR.9-12.PRF.PCT.1.1 (PRF.1.PCT.1) Investigate and sketch, with and without appropriate technology, the graphs of polynomial and rational functions using the characteristics of domain and range, upper and lower bounds, maximum and minimum points, asymptotes and end behavior, zeros, multiplicity of zeros, \mathbf{y} intercepts, and symmetry	Algebra 1: SE/TE: 546-551, 553-558, 705- 712 TE: 558A Lesson Resources, 712A Lesson Resources Algebra 2: SE/TE: 281-283, 289-292, 515- 520
CC.9-12.F.IF.7d (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.*	AR.9-12.PRF.PCT.1.3 (PRF.1.PCT.3) Describe, with and without appropriate technology, the fundamental characteristics of rational functions: zeros, discontinuities (including vertical asymptotes), and end behavior (including horizontal asymptotes)	Algebra 1: SE/TE: 705-712 TE: 712A Lesson Resources Algebra 2: SE/TE: 282-283, 435, 515-523, 524-525 TE: 523A Lesson Resources
CC.9-12.F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.*	AR.9-12.ELF.AII.5.2 (ELF.5.AII.2) Graph exponential functions and identify key characteristics: domain, range, intercepts, asymptotes, and end behavior	Algebra 1: SE/TE: 455, 460-463 Algebra 2: SE/TE: 434-441, 442-450 TE: 441A, 450A Lesson Resources
	AR.9-12.ELF.AIII.3.5 (ELF.3.AIII.5) Draw and analyze, with and without appropriate technology, graphs of logarithmic and exponential functions	Algebra 1: SE/TE: 453-459, 460-464 TE: 459A Lesson Resources Algebra 2: SE/TE: 469-476, 478-483 TE: 476A Lesson Resources, 483A Lesson Resources
	AR.9-12.EF.TDM.4.1 (EF.4.TDM.1) Draw and recognize the graphs of logarithmic and exponential functions, with and without appropriate technology	Algebra 1: SE/TE: 453-459, 460-464 TE: 459A Lesson Resources Algebra 2: SE/TE: 469-476, 478-483 TE: 476A Lesson Resources, 483A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.*	AR.9-12.ELF.PCT. 2.5 (ELF.2.PCT.5) Draw and analyze, with and without appropriate technology, graphs of logarithmic and exponential function	Algebra 1: SE/TE: 453-459, 460-464 TE: 459A Lesson Resources Algebra 2: SE/TE: 469-476, 478-483 TE: 476A Lesson Resources, 483A Lesson Resources
	AR.9-12.TF.PCT.5.7 (TF.5.PCT.7) Graph the six trigonometric functions, identify domain, range, intercepts, period, amplitude, and asymptotes as applicable and use symmetry to determine whether the function is even or odd through appropriate technology when needed	Algebra 2: SE/TE: 851-858, 861-867, 868- 874, 883, 886 TE: 858A, 867A, 874A Lesson Resources
	AR.9-12.TF.PCT.5.8 (TF.5.PCT.8) Determine, with and without appropriate technology, the amplitude, period, phase shift, and vertical shift, and sketch the graph of transformations of the trigonometric functions	Algebra 2: SE/TE: 875-882 TE: 882A Lesson Resources
	AR.9-12.RF.AII.1.7 (RF.1.AII.7) Investigate and identify key characteristics of period functions and their graphs (period, amplitude, maximum, and minimum)	Algebra 2: SE/TE: 853-854, 856, 862, 865
	AR.9-12.RF.AII.1.6 (RF.1.AII.6) Recognize periodic phenomena (sine or cosine functions such as sound waves, length of daylight, circular motion)	Algebra 2: SE/TE: 855, 857, 858, 863, 864, 866
CC.9-12.F.IF. 8 Analyze functions using different representations. Write a function defined by an expression in different but equivalent forms to reveal and	AR.9-12.PS.CM.1.2 (PS.1.CM.2) Write an algorithm to solve mathematical problems using formulas, equations, and functions.	Studied in 4th Year course

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
explain different properties of the function.	AR.9-12.ELF.PCT.2.2 (ELF.2.PCT.2) Develop and apply the laws of logarithms and the change-of-base formula to simplify and evaluate expressions	```Algebra 2: SE/TE: 462-467, 469-475, 478- 481```
CC.9-12.F.IF.8a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	AR.9-12.LQF.AIII.1.5 (LQF.1.AIII.5) Solve, with and without appropriate technology, quadratic equations by: -- extracting the square root, -- graphing, -- factoring, -- completing the square, -- using the quadratic formula	Algebra 1: SE/TE: 561-564, 568-572, 576- 580, 582-588 TE: 572A Lesson Resources, 581A Lesson Resources, 588A Lesson Resources Algebra 2: SE/TE: 219-223, 226-231, 233- 239 TE: 239A, 231A Lesson Resources
	AR.9-12.NLF.AI.4.3 (NLF.4.AI.3) Solve quadratic equations using the appropriate methods with and without technology: -- factoring, -- quadratic formula with real number solutions	Algebra 1: SE/TE: 568-572, 582-588 Algebra 2: SE/TE: 218-220, 226-231, 233- 239, 240-247
	AR.9-12.NLF.AI.4.4 (NLF.4.AI.4) Recognize function families and their connections including vertical shift and reflection over the x axis: -- quadratics (with rational coefficients), -- absolute value, -- exponential functions	Algebra 1: SE/TE: 347, 562, 553 TE: 350A Lesson Resources Algebra 2: SE/TE: 99-106, 108-110, 203, 415, 455, 877 TE: 106A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
(Continued) CC.9-12.F.IF.8a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	AR.9-12.QEF.AII.3.3 (QEF.3.AII.3) Analyze and solve quadratic equations with and without appropriate technology by: -- factoring, -- graphing, -- extracting the square root, -- completing the square, -- using the quadratic formula	Algebra 1: SE/TE: 561-564, 568-572, 576- 580, 582-588 TE: 572A Lesson Resources, 581A Lesson Resources, 588A Lesson Resources Geometry: TE: 439 Algebra 2: SE/TE: 216-223, 226-231, 233- 239, 240-247 TE: 223A, 231A, 239A, 247A Lesson Resources
	AR.9-12.QEF.AII.3.5 (QEF.3.AII.5) Develop and analyze, with and without appropriate technology, quadratic relations: -- graph a parabolic relationship when given its equation -- write an equation when given its roots (zeros or solutions) or graph -- determine the nature of the solutions graphically and by evaluating the discriminant -- determine the maximum or minimum values and the axis of symmetry both graphically and algebraically	Algebra 1: SE/TE: 546-552, 553-558, 561- 562, 582-588 TE: 552A Lesson Resources, 558A Lesson Resources Algebra 2: SE/TE: 194-201, 203-204, 209- 211, 232, 242-243, 268
	AR.9-12.NF.AC.4.1 (NF.4.AC.1) Factor polynomials: -- greatest common factor, -- binominals (difference of squares), -- trinomials, -- combinations of the above	Algebra 1: SE/TE: 492-496, 512-517, 518- 522, 523-528, 529-533 TE: 496A Lesson Resources, 517A Lesson Resources, 522A Lesson Resources, 528A Lesson Resources, 533A Lesson Resources Algebra 2: SE/TE: 218-220, 234-235, 297301

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.F.IF.8b Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02)^{\wedge} t, y=(0.97)^{\wedge} t, y=$ (1.01)^(12t), $y=$ (1.2)^($t / 10$), and classify them as representing exponential growth and decay.	AR.9-12.ELF.AII.5.3 (ELF.5.AII.3) Identify the effect that changes in the parameters of the base have on the graph of the exponential function	Algebra 1: SE/TE: 460-463 Algebra 2: SE/TE: 435, 443, 444, 447
	AR.9-12.ELF.AII.5.4 (ELF.5.AII.4) Recognize and solve problems that can be modeled using exponential functions	Algebra 1: SE/TE: 455, 461-465, 591 Algebra 2: SE/TE: 434, 440, 448-449, 471
	AR.9-12.EF.TDM.4.3 (EF.4.TDM.3) Use the change of base formula to simplify and evaluate logarithmic expressions, using technology	$\begin{aligned} & \hline \text { Algebra 2: } \\ & \text { SE/TE: } 464,466 \end{aligned}$
CC.9-12.F.IF. 9 Analyze functions using different representations. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	AR.9-12.LF.AI.3.9 (LF.3.AI.9) Describe the effects of parameter changes, slope and/or y-intercept, on graphs of linear functions and vice versa	Algebra 1: SE/TE: 308-312 Geometry: SE/TE: 189-195 TE: 196A Lesson Resources Algebra 2: SE/TE: 77-80, 81-88 TE: 88A, 80A Lesson Resources
	AR.9-12.SEI.AC.3.2 (SEI.3.AC.2) SLE 2. Solve, with and without appropriate technology, systems of two linear equations and systems of two inequalities numerically, algebraically and graphically	Algebra 1: SE/TE: 364-368, 372-376, 378- 383, 400-404 TE:363A, 369A, 377A Lesson Resources Algebra 2: SE/TE: 134-141, 142-148, 157162 TE: 162A, 141A, 148A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.F.IF. 9 Analyze functions using different representations. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	AR.9-12.LF.TM.1.3 (LF.1.TM.3) Make inferences and predictions using: -- recursion on the table, -- inspection on the graph, -- algebraic manipulation on the model	Algebra 1: SE/TE: 253-255 Algebra 2: SE/TE: 92-98, 209-213, 331-334, $434-441,565-566$
	AR.9-12.EF.TM.2.4 (EF.2.TM.4) Make inferences and predictions using: -- recursion on the table, -- inspection of the graph, -- algebraic manipulation on the model	Algebra 1: SE/TE: 253-255 Algebra 2: SE/TE: 92-98, 209-213, 331-334, 434-441, 565-566
	AR.9-12.MM.TM.3.3 (MM.3.TM.3) Make inferences and predictions using: -- recursion on the table, -- inspection of the graph, - - algebraic manipulation on the model	Algebra 1: SE/TE: 253-255 Algebra 2: SE/TE: 92-98, 209-213, 331-334, 434-441, 565-566
	AR.9-12.PS.TM.4.4 (PS.4.TM.4) Make inferences and predictions using: -- recursion on the table, -- inspection of the graph, -- algebraic manipulation on the model	Algebra 1: SE/TE: 253-255 Algebra 2: SE/TE: 92-98, 209-213, 331-334, 434-441, 565-566

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
relationship between two quantities.*	AR.9-12.PS.CM.1.2 (PS.1.CM.2) Write an algorithm to solve mathematical problems using formulas, equations, and functions.	Studied in 4th year course.
	AR.9-12.SS.PCT.4.1 (SS.4.PCT.1) Develop, with and without appropriate technology, a representation of sequences recursively	Algebra 1: SE/TE: 275-281, 467-471 TE: 472A, 281A Lesson Resources Algebra 2: TE: 578
	AR.9-12.PS.CM.1.2 (PS.1.CM.2) Write an algorithm to solve mathematical problems using formulas, equations, and functions.	Studied in 4th year course.
	AR.9-12.SS.AIII.4.3 (SS.4.AIII.3) Solve, with and without appropriate technology, problems involving the sum (including Sigma notation) of finite and infinite sequences and series	Algebra 2: SE/TE: 572-577, 580-586
	AR.9-12.PI.CM.3.2 (PI.3.CM.2) Create functions using recursions and loops.	Algebra 1: SE/TE: 275, 469 Algebra 2: SE/TE: 572, 580
CC.9-12.F.BF.1a Determine an explicit expression, a recursive process, or steps for calculation from a context.	AR.9-12.SS.PCT.4.1 > AR.912.SS.PCT.4.1 (SS.4.PCT.1) Develop, with and without appropriate technology, a representation of sequences recursively [Grade Level 9-12]	Algebra 1: SE/TE: 275-281, 467-471 TE: 472A, 281A Lesson Resources Algebra 2: TE: 578

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.NF.AC.4.5 (NF.4.AC.5) Identify and apply nonlinear functions to real world situations such as acceleration, area, volume, population, bacteria, compound interest, percent depreciation and appreciation, amortization, geometric sequences, etc.	Algebra 1: SE/TE: 236, 238, 244, 245, 250, 251, 258, 262, 264, 265, 266, 271, 272 Algebra 2: SE/TE: 471, 474-476, 480, 482483
	AR.9-12.SS.PCT.4.4 (SS.4.PCT.4) Determine the nth term of a sequence given a rule or specific terms and use appropriate technology when needed	Algebra 1: SE/TE: 274-276, 467-469 Algebra 2: SE/TE: 573, 575, 581
	AR.9-12.SS.PCT.4.2 (SS.4.PCT.2) Define and discriminate between arithmetic and geometric sequences and series and use appropriate technology when needed	Algebra 1: SE/TE: 274-281, 467-472 TE: 281A Lesson Resources, 472A Lesson Resources Algebra 2: SE/TE: 572-577, 580-586, 587- 592, 595-600 TE: 577A, 586A, 593A, 601A Lesson Resources
(Continued) CC.9-12.F.BF. 2 Build a function that models a relationship between two quantities. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.*	AR.9-12.PI.CM.3.2 (PI.3.CM.2) Create functions using recursions and loops.	Algebra 1: SE/TE: 275, 469 Algebra 2: SE/TE: 572, 580
	AR.9-12.SS.PCT.4.5 (SS.4.PCT.5) Use, with and without appropriate technology, sequences and series to solve real world problems	Algebra 1: SE/TE: 277, 279, 469, 471 Algebra 2: SE/TE: 574, 576, 582, 584, 585, 592, 600 TE: 586A Lesson Resources
	AR.9-12.SS.AIII.4.4 (SS.4.AIII.4) Determine, with and without appropriate technology, the nth term of a sequence given a rule or specific terms	Algebra 1: SE/TE: 274-276, 467-469 Algebra 2: SE/TE: 573, 575, 581, 584

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.SS.AIII.4.5	
(SS.4.AIII.5) Use, with and without appropriate technology, sequences and series to solve real world problems	Algebra 1: SE/TE: 277, 279, 469, 471	

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.NLF.AI.4.4 (NLF.4.AI.4) Recognize function families and their connections including vertical shift and reflection over the x axis: -- quadratics (with rational coefficients), -- absolute value, -- exponential functions	Algebra 1: SE/TE: 347, 562, 553 Algebra 2: SE/TE: 99-106, 108-110, 203, 415, 455, 877 TE: 106A Lesson Resources
	AR.9-12.TF.PCT.5.8 (TF.5.PCT.8) Determine, with and without appropriate technology, the amplitude, period, phase shift, and vertical shift, and sketch the graph of transformations of the trigonometric functions	Algebra 2: SE/TE: 875-882 TE: 882A Lesson Resources
	AR.9-12.EF.TDM.4.2 (EF.4.TDM.2) Apply properties of logarithms to convert and solve logarithmic (common and natural) and exponential equations	```Algebra 2: SE/TE: 462-467, 469-475, 468- 481,489```
CC.9-12.F.BF. 4 Find inverse functions	No Matches in Arkansas Frameworks	Algebra 1: TE: 329 Algebra 2: SE/TE: 405-412 TE: 412A Lesson Resources
CC.9-12.F.BF.4a Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2\left(x^{\wedge} 3\right)$ or $f(x)$ $=(x+1) /(x-1)$ for $x \neq 1$ (x not equal to 1).	AR.9-12.RF.AII.1.3 (RF.1.AII.3) Determine the inverse of a function (Graph, with and without appropriate technology, functions and their inverses)	Algebra 1: TE: 329 Algebra 2: SE/TE: 405-412 TE: 412A Lesson Resources
CC.9-12.F.BF.4b (+) Verify by composition that one function is the inverse of another.	No Matches in Arkansas Frameworks	Algebra 2: SE/TE: 409

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.F.BF.4c (+) Read values of an inverse function from a graph or a table, given that the function has an inverse.	No Matches in Arkansas Frameworks	Algebra 2: SE/TE: 405-406, 410
CC.9-12.F.BF.4d (+) Produce an invertible function from a non-invertible function by restricting the domain.	AR.9-12.TF.PCT.5.9 (TF.5.PCT.9) Identify and graph, with and without	Algebra 2: appropriate technology, the inverse of trigonometric
functions including the		
restrictions on the domain		

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.ELF.PCT.2.3 (ELF.2.PCT.3) Solve graphically, algebraically and numerically, with and without appropriate technology, equations and real world problems involving exponential and logarithmic expressions	Algebra 2: SE/TE: 437, 469-476, 478-483 TE: 476A Lesson Resources, 483A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, © 2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.EF.TM.2.1 (EF.2.TM.1) Identify exponential growth or decay by creating tables, graphs, and mathematical models	Algebra 1: SE/TE: 589-594 TE: 594A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
	AR.9-12.LF.AC.2.7 (LF.2.AC.7) Write an equation given: -- two points, -- a point and y-intercept, -- an x-intercept and \mathbf{y} intercept, -- a point and slope, -- a table of data, -- the graph of a line	Algebra 1: SE/TE: 336-343, 308-313, 315- 320, 322-329 TE: 343A, 314A, 320A, 328A Lesson Resources Geometry: SE/TE: 189-195 TE: 196A Lesson Resources Algebra 2: SE/TE: 77-80, 81-88 TE: 88A, 80A Lesson Resources
	AR.9-12.SEI.AC.3.6 (SEI.3.AC.6) SLE 6. Apply linear, piece-wise and step functions to real world situations that involve a combination of rates, proportions and percents such as sales tax, simple interest, social security, constant depreciation and appreciation, arithmetic sequences, constant rate of change, income taxes, postage, utility bills, commission, and traffic tickets	```Algebra 1: SE/TE: 8, 169, 249-242, 348, 462 Algebra 2: SE/TE: 64, 84, 90-91, 576```
(Continued) CC.9-12.F.LE. 2 Construct and compare linear, quadratic, and exponential models and solve problems. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table).*	AR.9-12.NF.AC.4.5 (NF.4.AC.5) Identify and apply nonlinear functions to real world situations such as acceleration, area, volume, population, bacteria, compound interest, percent depreciation and appreciation, amortization, geometric sequences, etc.	Algebra 1: SE/TE: 236, 238, 244, 245, 250, 251, 258, 262, 264, 265, 266, 271, 272 Algebra 2: SE/TE: 471, 474-476, 480, 482- 483
	AR.9-12.LF.TM.1.1 (LF.1.TM.1) Identify a linear relationship represented by a table, by a graph, and by symbolic forms	Algebra 1: SE/TE: 675, 478, 461, 462 Algebra 2: SE/TE: 68-70

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

$\begin{array}{l}\text { Common Core State Standards } \\ \text { for Mathematics }\end{array}$	$\begin{array}{l}\text { Arkansas Student } \\ \text { Learning Expectations } \\ \text { for Mathematics }\end{array}$	$\begin{array}{l}\text { Pearson Algebra 1, Geometry, } \\ \text { Algebra 2, Common Core } \\ \text { ©2012 }\end{array}$		
	$\begin{array}{l}\text { AR.9-12.EF.TM.2.1 (EF.2.TM.1) } \\ \text { Identify exponential growth or } \\ \text { decay by creating tables, } \\ \text { graphs, and mathematical } \\ \text { models }\end{array}$	$\begin{array}{l}\text { Algebra 1: } \\ \text { SE/TE: 589-594 }\end{array}$		
TE: 594A Lesson Resources			$]$	Algebra 2:
:---				

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.PRF.AII.4.3 (PRF.4.AII.3) Write the equation of a polynomial function given its roots	Algebra 1: SE/TE: 573

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.F.TFM.5.2 (F.5.TFM.2) Apply properties of logarithms to convert and solve logarithmic (common and natural) and exponential equations	Algebra 2: SE/TE: 462-467, 469-475, 478- 481,489

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
(Continued) CC.9-12.F.LE. 5 Construct and compare linear, quadratic, and exponential models and solve problems. Interpret the parameters in a linear or exponential function in terms of a context.*	AR.9-12.LF.AI.3.5 (LF.3.AI.5) Interpret the rate of change/slope and intercepts within the context of everyday life	Algebra 1: SE/TE: 294-300 Geometry: SE/TE: 189-195 Algebra 2: SE/TE: 70, 501-502, 504
	AR.9-12.LF.AI.3.9 (LF.3.AI.9) Describe the effects of parameter changes, slope and/or y-intercept, on graphs of linear functions and vice versa	Algebra 1: SE/TE: 294-300 Geometry: SE/TE: 189-195 TE: 196A Lesson Resources Algebra 2: SE/TE: 77-80, 81-88 TE: 88A, 80A Lesson Resources
	AR.9-12.LF.AC.2.4 (LF.2.AC.4) Interpret the rate of change (slope) and intercepts within the context of everyday life	Algebra 1: SE/TE: 294-300 Geometry: SE/TE: 189-196 TE: 196A Lesson Resources Algebra 2: SE/TE: 447, 437, 500-504
	AR.9-12.EF.TDM.4.4 (EF.4.TDM.4) Recognize and apply properties of exponential functions to solve real-world problems (e.g., compound interest, amortization, annuities, appreciation, depreciation)	Algebra 1: SE/TE: 675, 478, 461, 462 Algebra 2: SE/TE: 436-437, 447-449
CC.9-12.F.TF. 1 Extend the domain of trigonometric functions using the unit circle. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.	AR.9-12.TF.PCT.5.1 (TF.5.PCT.1) Define the six trigonometric functions as: -- circular functions, -- ratios of sides of right triangles, -- functions of an angle in standard position when given a point on the terminal side of the angle	Algebra 1: SE/TE: 645-651 TE: 651A Lesson Resources Geometry: SE/TE: 506-513 TE: 489B, 513A Lesson Resources Algebra 2: SE/TE: 838-842, 851-855, 861- 864, 868-872, 919-926

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.TF.PCT.5.3 (TF.5.PCT.3) Sketch an angle in standard position and determine the reference angle and coterminal angles	Algebra 2: SE/TE: 836-838

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
(Continued) CC.9-12.F.TF. 3 (+) Extend the domain of trigonometric functions using the unit circle. Use special triangles to determine geometrically the values of sine, cosine, tangent for $n / 3, \pi / 4$ and $n / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $n-x, n+x$, and 2π - x in terms of their values for x, where x is any real number.	AR.9-12.TF.PCT.5.1 (TF.5.PCT.1) Define the six trigonometric functions as: -- circular functions, -- ratios of sides of right triangles, -- functions of an angle in standard position when given a point on the terminal side of the angle	Algebra 1: SE/TE: 645-651 TE: 651A Lesson Resources Geometry: SE/TE: 506-513 TE: 489B, 513A Lesson Resources Algebra 2: SE/TE: 838-842, 851-855, 861- 864, 868-872, 919-926
	AR.9-12.TF.PCT.5.4 (TF.5.PCT.4) Find the values of the trigonometric functions given the value of one trigonometric function and an additional piece of qualifying information or given the coordinates of a point on the terminal side of an angle	Algebra 2: SE/TE: 919-926 TE: 926A Lesson Resources
	AR.9-12.TF.PCT.5.5 (TF.5.PCT.5) Develop and become fluent in the recall of the exact values of the trigonometric functions for special angles	Algebra 2: SE/TE: 838-839
	AR.9-12.TF.PCT.5.7 (TF.5.PCT.7) Graph the six trigonometric functions, identify domain, range, intercepts, period, amplitude, and asymptotes as applicable and use symmetry to determine whether the function is even or odd through appropriate technology when needed	Algebra 2: SE/TE: 851-858, 861-867, 868- $874,883,886$ TE: 858A, 867A, 874A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.F.TF.4 (+) Extend the domain of trigonometric functions using the unit circle. Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.	AR.9-12.PC.PCT.8.1 (PC.8.PCT.1) Convert polar coordinates to rectangular coordinates and rectangular coordinates to polar coordinates	Studied in 4th year course

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.F.TF. 6 (+) Model periodic phenomena with trigonometric functions. Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed. (Continued) CC.9-12.F.TF. 6 (+) Model periodic phenomena with trigonometric functions. Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.	AR.9-12.TF.PCT.5.8 (TF.5.PCT.8) Determine, with and without appropriate technology, the amplitude, period, phase shift, and vertical shift, and sketch the graph of transformations of the trigonometric functions	Algebra 2: SE/TE: 875-882 TE: 882A Lesson Resources
	AR.9-12.TF.PCT.5.9 (TF.5.PCT.9) Identify and graph, with and without appropriate technology, the inverse of trigonometric functions including the restrictions on the domain	Algebra 2: SE/TE: 911-917 TE: 918A Lesson Resources
CC.9-12.F.TF. 7 (+) Model periodic phenomena with trigonometric functions. Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.*	AR.9-12.TF.PCT.5.8 (TF.5.PCT.8) Determine, with and without appropriate technology, the amplitude, period, phase shift, and vertical shift, and sketch the graph of transformations of the trigonometric functions	Algebra 2: SE/TE: 875-882 TE: 882A Lesson Resources
	AR.9-12.TF.PCT.5.9 (TF.5.PCT.9) Identify and graph, with and without appropriate technology, the inverse of trigonometric functions including the restrictions on the domain	Algebra 2: SE/TE: 911-917 TE: 918A Lesson Resources
	AR.9-12.TEI.PCT.7.3 (TEI.7.PCT.3) Solve trigonometric equations algebraically and graphically and use appropriate technology when needed	Algebra 2: SE/TE: 911-918 TE: 918A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.F.TF. 8 Prove and apply trigonometric identities. Prove the Pythagorean identity $(\sin A)^{\wedge} 2+(\cos A)^{\wedge} 2=1$ and use it to find $\sin A, \cos A$, or $\tan A$, given $\sin A, \cos A$, or $\tan A$, and the quadrant of the angle.	AR.9-12.TEI.PCT.7.1 (TEI.7.PCT.1) Develop the Pythagorean Identities and use to verify other identities and simplify expressions	Algebra 2: SE/TE: 906-909 TE: 910A Lesson Resources
CC.9-12.F.TF. 9 (+) Prove and apply trigonometric identities. Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.	AR.9-12.TEI.PCT.7.2 (TEI.7.PCT.2) Develop and use trigonometric formulas including sum and difference formulas and multiple-angle formulas	Algebra 2: SE/TE: 944-950 TE: 950A Lesson Resources
Geometry		
CC.9-12.G.CO. 1 Experiment with transformations in the plane. Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	AR.9-12.CGT.G.5.7 (CGT.5.G.7) Draw and interpret the results of transformations and successive transformations on figures in the coordinate plane: -- translations, -- reflections, -- rotations ($90^{\circ}, 180^{\circ}$, clockwise and counterclockwise about the origin), -- dilations (scale factor)	```Geometry: SE/TE: 545-552, 554-560, 587- 593 TE: 552A, 560A, 593A Lesson Resources```
	AR.9-12.LG.G.1.2 (LG.1.G.2) Represent points, lines, and planes pictorially with proper identification, as well as basic concepts derived from these undefined terms, such as segments, rays, and angles	Geometry: SE/TE: 11-19 TE: 19A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.LG.G.1.5 (LG.1.G.5) Explore, with and without appropriate technology, the relationship between angles formed by two lines cut by a transversal to justify when lines are parallel	Geometry: SE/TE: 140-146, 148-155, 156- $163,164-169$

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.R.G.4.3 (R.4.G.3) Identify and explain why figures tessellate	Geometry: SE/TE: 595-956

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.6.G.8.2 (G.8.6.2) Characteristics of Geometric Shapes: Investigate with manipulatives or grid paper what happens to the perimeter and area of a two-dimensional shape when the dimensions are changed	Geometry: SE/TE: 59-67

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
	AR.9-12.CGT.G.5.7 (CGT.5.G.7) Draw and interpret the results of transformations and successive transformations on figures in the coordinate plane: -- translations, -- reflections, -- rotations ($90^{\circ}, 180^{\circ}$, clockwise and counterclockwise about the origin), -- dilations (scale factor)	```Geometry: SE/TE: 545-552, 554-560, 587- 593 TE: 552A, 560A, 593A Lesson Resources```
CC.9-12.G.CO. 8 Understand congruence in terms of rigid motions. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.	AR.9-12.T.G.2.1 (T.2.G.1) Apply congruence (SSS ...) and similarity (AA ...) correspondences and properties of figures to find missing parts of geometric figures and provide logical justification	Geometry: SE/TE: 440-447, 450-458
	AR.9-12.LG.G.1.3 (LG.1.G.3) Describe relationships derived from geometric figures or figural patterns	Geometry: SE/TE: 82-84

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.G.CO. 9 Prove geometric theorems. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.	AR.9-12.LG.G.1.5 (LG.1.G.5) Explore, with and without appropriate technology, the relationship between angles formed by two lines cut by a transversal to justify when lines are parallel	Geometry: SE/TE: 140-146, 148-155, 156- 163, 164-169 TE: 146A, 155A, 163A, 169A Lesson Resources
	AR.9-12.LG.G.1.4 (LG.1.G.4) Apply, with and without appropriate technology, definitions, theorems, properties, and postulates related to such topics as complementary, supplementary, vertical angles, linear pairs, and angles formed by perpendicular lines	Geometry: SE/TE: 34-40, 120-127 TE: 40A, 127A Lesson Resources
	AR.9-12.T.G.2.3 (T.2.G.3) Identify and use the special segments of triangles (altitude, median, angle bisector, perpendicular bisector, and midsegment) to solve problems	Geometry: SE/TE: 300-306, 308-314, 292- 298, 285-290 TE: 291A, 299A, 307A, 315A Lesson Resources
(Continued) CC.9-12.G.CO. 9 Prove geometric theorems. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.	AR.9-12.M.G.3.5 (M.3.G.5) Identify and apply properties of and theorems about parallel and perpendicular lines to prove other theorems and perform basic Euclidean constructions	Geometry: SE/TE: 164-169 TE: 169A Lesson Resources
	AR.9-12.LG.G.1.3 (LG.1.G.3) Describe relationships derived from geometric figures or figural patterns	Geometry: SE/TE: 82-84, 232

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core O2012
CC.9-12.G.CO.10 Prove geometric theorems. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180 degrees; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.	AR.9-12.LG.G.1.6 (LG.1.G.6) Give justification for conclusions reached by deductive reasoning. State and prove key basic theorems in geometry (i.e., the Pythagorean theorem, the sum of the measures of the angles line triangle is 180, and the two sides of a triangle is of parallel to the third side and half it's length	Geometry: SE/TE: 106-112, 491-494 TE: 112A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.G.CO. 11 Prove geometric theorems. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.	AR.9-12.CGT.G.5.5 (CGT.5.G.5) Determine, given a set of points, the type of figure based on its properties (parallelogram, isosceles triangle, trapezoid)	```Geometry: SE/TE: 250-256, 359-366, 389- 397 TE: 366A, 397A, 256A Lesson Resources```
	AR.9-12.M.G.3.5 (M.3.G.5) Identify and apply properties of and theorems about parallel and perpendicular lines to prove other theorems and perform basic Euclidean constructions	Geometry: SE/TE: 164-169 TE: 169A Lesson Resources
	AR.9-12.LG.G.1.3 (LG.1.G.3) Describe relationships derived from geometric figures or figural patterns	$\begin{aligned} & \text { Geometry: } \\ & \text { SE/TE: 82-84, } 232 \end{aligned}$
	AR.9-12.R.G.4.1 (R.4.G.1) Explore and verify the properties of quadrilaterals	```Geometry: SE/TE: 367-371, 421```
CC.9-12.G.CO. 12 Make geometric constructions. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.	AR.9-12.M.G.3.5 (M.3.G.5) Identify and apply properties of and theorems about parallel and perpendicular lines to prove other theorems and perform basic Euclidean constructions	Geometry: SE/TE: 164-169 TE: 169A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.G.CO.13 Make geometric constructions. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	AR.9-12.M.G.3.5 (M.3.G.5) Identify and apply properties of and theorems about parallel and perpendicular lines to prove other theorems and perform basic Euclidean constructions	Geometry: SE/TE: 164-169 TE: 169A-B Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

$\begin{array}{l}\text { Common Core State Standards } \\ \text { for Mathematics }\end{array}$	$\begin{array}{l}\text { Arkansas Student } \\ \text { Learning Expectations } \\ \text { for Mathematics }\end{array}$	$\begin{array}{l}\text { Pearson Algebra 1, Geometry, } \\ \text { Algebra 2, Common Core } \\ \text { ©2012 }\end{array}$		
	$\begin{array}{l}\text { AR.9-12.M.G.3.4 (M.3.G.4) Use } \\ \text { (given similar geometric } \\ \text { objects) proportional } \\ \text { reasoning to solve practical } \\ \text { problems (including scale } \\ \text { drawings) }\end{array}$	$\begin{array}{l}\text { Geometry: } \\ \text { SE/TE: 432, 443, 445, 454, 456, } \\ \text { 464, 465, 473, 476 }\end{array}$		
TE: 438A Lesson Resources			$]$	
:---				

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.M.G.3.4 (M.3.G.4) Use (given similar geometric objects) proportional reasoning to solve practical problems (including scale drawings)	```Geometry: SE/TE: 432, 443, 445, 454, 456, 464, 465, 473, 476 TE: 438A Lesson Resources```
CC.9-12.G.SRT. 3 Understand similarity in terms of similarity transformations. Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.	AR.9-12.T.G.2.1 (T.2.G.1) Apply congruence (SSS ...) and similarity (AA ...) correspondences and properties of figures to find missing parts of geometric figures and provide logical justification	Geometry: SE/TE: 440-447, 450-458 TE: 447A, 458A Lesson Resources
CC.9-12.G.SRT. 4 Prove theorems involving similarity. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.	AR.9-12.T.G.2.3 (T.2.G.3) Identify and use the special segments of triangles (altitude, median, angle bisector, perpendicular bisector, and midsegment) to solve problems	Geometry: SE/TE: 308-314, 300-306, 292298, 285-290 TE: 315A, 307A, 299A, 291A Lesson Resources
	AR.9-12.LG.G.1.6 (LG.1.G.6) Give justification for conclusions reached by deductive reasoning. State and prove key basic theorems in geometry (i.e., the Pythagorean theorem, the sum of the measures of the angles of a triangle is 180°, and the line joining the midpoints of two sides of a triangle is parallel to the third side and half it's length	Geometry: SE/TE: 106-112, 491-494 TE: 112A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.T.G.2.1 (T.2.G.1) Apply congruence (SSS ...) and similarity (AA ...) correspondences and properties of figures to find missing parts of geometric figures and provide logical justification	Geometry: SE/TE: 440-447, 450-458 TE: 447A, 458A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.T.G.2.1 (T.2.G.1) Apply congruence (SSS ...) and similarity (AA ...) correspondences and properties of figures to find missing parts of geometric figures and provide logical justification	Geometry: SE/TE: 440-447, 450-458
	AR.9-12.TF.PCT.5.6 (TF.5.PCT.6) Solve, with and without appropriate technology, real world problems involving applications of trigonometric functions	Algebra 2: SE/TE: 857, 863, 864, 866,
873, 879, 887, 889, 915, 917		

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.TF.PCT.5.1 (TF.5.PCT.1) Define the six trigonometric functions as: -- circular functions, -- ratios of sides of right triangles, -- functions of an angle in standard position when given a point on the terminal side of the angle	Algebra 1: SE/TE: 645-651 TE: 651A Lesson Resources Geometry: SE/TE: 506-513 TE: 489B, 513A Lesson Resources Algebra 2: SE/TE: 838-842, 851-855, 861- 864, 868-872, 919-926
	AR.9-12.TF.AIII.5.1 (TF.5.AIII.1) Define sine, cosine, and tangent as ratios of sides of right triangle	Algebra 1: SE/TE: 645-651 TE: 651A Lesson Resources Geometry: SE/TE: 507-513 TE: 513A Lesson Resources Algebra 2: SE/TE: 919-926 TE: 926A Lesson Resources
CC.9-12.G.SRT. 7 Define trigonometric ratios and solve problems involving right triangles. Explain and use the relationship between the sine and cosine of complementary angles.	AR.9-12.T.G.2.7 (T.2.G.7) Use similarity of right triangles to express the sine, cosine, and tangent of an angle in a right triangle as a ratio of given lengths of sides	Geometry: SE/TE: 507-513
	AR.9-12.ME.TDM.3.2 (ME.3.TDM.2) Use sine, cosine, and tangent ratios to determine lengths of sides and angle measures of right triangles for real-world problems (e.g., angles of elevation and depression and various distances)	Algebra 1: 648 Geometry: SE/TE: 516-521 TE: 521A Lesson Resources Algebra 2: SE/TE: 921, 923, 924, 925

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
	AR.9-12.TF.PCT.5.1 (TF.5.PCT.1) Define the six trigonometric functions as: -- circular functions, -- ratios of sides of right triangles, -- functions of an angle in standard position when given a point on the terminal side of the angle	Algebra 1: SE/TE: 645-651 TE: 651A Lesson Resources Geometry: SE/TE: 506-513 TE: 489B, 513A Lesson Resources Algebra 2: SE/TE: 838-842, 851-855, 861- 864, 868-872, 919-926

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
	AR.9-12.T.G.2.6 (T.2.G.6) Use trigonometric ratios (sine, cosine, tangent) to determine lengths of sides and measures of angles in right triangles including angles of elevation and angles of depression	Algebra 1: SE/TE: 648 Geometry: SE/TE: 516-521 TE: 521A Lesson Resources Algebra 2: SE/TE: 921, 923, 924, 925
	AR.9-12.T.G.2.7 (T.2.G.7) Use similarity of right triangles to express the sine, cosine, and tangent of an angle in a right triangle as a ratio of given lengths of sides	```Geometry: SE/TE: 507-513```
	AR.9-12.SEI.AI.2.7 (SEI.2.AI.7) Use coordinate geometry to represent and/or solve problems (midpoint, length of a line segment, and Pythagorean Theorem)	Algebra 1: SE/TE: 614-618 Geometry: SE/TE: 50-56, 61 TE: 56A Lesson Resources
	AR.9-12.SEI.AC.3.4 (SEI.3.AC.4) Use, with and without appropriate technology, coordinate geometry to represent and solve problems including midpoint, length of a line segment and Pythagorean Theorem	Algebra 1: SE/TE: 614-618 Geometry: SE/TE: 50-56, 61 TE: 56A Lesson Resources
(Continued) CC.9-12.G.SRT. 8 Define trigonometric ratios and solve problems involving right triangles. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.	AR.9-12.ME.TDM.3.2 (ME.3.TDM.2) Use sine, cosine, and tangent ratios to determine lengths of sides and angle measures of right triangles for real-world problems (e.g., angles of elevation and depression and various distances)	Algebra 1: 648 Geometry: SE/TE: 516-521 TE: 521A Lesson Resources Algebra 2: SE/TE: 921, 923, 924, 925

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
	AR.9-12.TF.PCT.5.1 (TF.5.PCT.1) Define the six trigonometric functions as: -- circular functions, -- ratios of sides of right triangles, -- functions of an angle in standard position when given a point on the terminal side of the angle	Algebra 1: SE/TE: 645-651 TE: 651A Lesson Resources Geometry: SE/TE: 506-513 TE: 489B, 513A Lesson Resources Algebra 2: SE/TE: 838-842, 851-855, 861- 864, 868-872, 919-926

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
perpendicular to the opposite side.	AR.9-12.TF.PCT.5.1 (TF.5.PCT.1) Define the six trigonometric functions as: -- circular functions, -- ratios of sides of right triangles, -- functions of an angle in standard position when given a point on the terminal side of the angle	Algebra 1: SE/TE: 645-651 TE: 651A Geometry: SE/TE: 506-513 TE: 489B, 513A Lesson Resources Algebra 2: SE/TE: 838-842, 851-855, 861- 864, 868-872, 919-926
	AR.9-12.OT.PCT.6.3 (OT.6.PCT.3) Determine the area of an oblique triangle by using an appropriate formula and appropriate technology when needed	Geometry: SE/TE: 617-620 Algebra 2: SE/TE: 928-929
	AR.9-12.TF.AIII.5.3 (TF.5.AIII.3) Determine (by using an appropriate formula), with and without technology, the area of an oblique triangle	Geometry: SE/TE: 617-620 Algebra 2: SE/TE: 928-929

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.G.SRT. 11 (+) Apply trigonometry to general triangles. Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems,	AR.9-12.PC.PCT.8.4 (PC.8.PCT.4) Apply polar coordinates to real world situations and use appropriate technology when needed	Studied in 4th year course
	AR.9-12.TF.PCT.5.1 (TF.5.PCT.1) Define the six trigonometric functions as: -- circular functions, -- ratios of sides of right triangles, -- functions of an angle in standard position when given a point on the terminal side of the angle	Algebra 1: SE/TE: 645-651 TE: 651A Lesson Resources Geometry: SE/TE: 506-513 TE: 489B, 513A Lesson Resources Algebra 2: SE/TE: 838-842, 851-855, 861- 864, 868-872, 919-926
	AR.9-12.OT.PCT.6.1 (OT.6.PCT.1) Develop and use the Law of Sines and the Law of Cosines to solve oblique triangles and use appropriate technology when needed	$\begin{aligned} & \text { Algebra 2: } \\ & \text { SE/TE: 928-934, } 936-942 \\ & \text { TE: 934A, 942A } \end{aligned}$
	AR.9-12.OT.PCT.6.2 (OT.6.PCT.2) Solve real world problems applying the Law of Sines and the Law of Cosines and appropriate technology when needed	Algebra 2: SE/TE: 931, 933, 934, 941-942
	AR.9-12.TF.AIII.5.2 (TF.5.AIII.2) Develop and use, with and without appropriate technology, the Law of Sines and the Law of Cosines to solve oblique triangles	Algebra 2: SE/TE: 928-934, 936-942 TE: 934A, 942A Lesson Resources
	AR.9-12.ME.TDM.3.3 (ME.3.TDM.3) Use laws of sine and cosine to determine lengths of sides, measures of angles, and area of triangles for real- world problems (e.g., Heron's formula)	Algebra 2: SE/TE: 928-934, 936-942 TE: 934A, 942A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
resultant forces).	AR.9-12.PC.PCT.8.4 (PC.8.PCT.4) Apply polar coordinates to real world situations and use appropriate technology when needed	Studied in 4th year course
	AR.9-12.OT.PCT.6.1 (OT.6.PCT.1) Develop and use the Law of Sines and the Law of Cosines to solve oblique triangles and use appropriate technology when needed	Algebra 2: SE/TE: 928-934, 936-942 TE: 934A, 942A
	AR.9-12.OT.PCT.6.2 (OT.6.PCT.2) Solve real world problems applying the Law of Sines and the Law of Cosines and appropriate technology when needed	Algebra 2: SE/TE: 931, 933, 934, 941-942
	AR.9-12.TF.PCT.5.6 (TF.5.PCT.6) Solve, with and without appropriate technology, real world problems involving applications of trigonometric functions	Algebra 2: SE/TE: 857, 863, 864, 866, 871, 873, 879, 887, 889, 915, 917
	AR.9-12.TF.AIII.5.2 (TF.5.AIII.2) Develop and use, with and without appropriate technology, the Law of Sines and the Law of Cosines to solve oblique triangles	Algebra 2: SE/TE: 928-934, 936-942 TE: 934A, 942A Lesson Resources
CC.9-12.G.C. 1 Understand and apply theorems about circles. Prove that all circles are similar.	AR.9-12.R.G.4.5 (R.4.G.5) Investigate and use the properties of angles (central and inscribed) arcs, chords, tangents, and secants to solve problems involving circles	Geometry: SE/TE: 790-797 TE: 797A Lesson Resources
	AR.9-12.CGT.G.5.6 (CGT.5.G.6) Write, in standard form, the equation of a circle given a graph on a coordinate plane or the center and radius of a circle	Geometry: SE/TE: 798-803 TE: 803A Lesson Resources Algebra 2: SE/TE: 630-636 TE: 636A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.G.C. 2 Understand and apply theorems about circles. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.	AR.9-12.R.G.4.5 (R.4.G.5) Investigate and use the properties of angles (central and inscribed) arcs, chords, tangents, and secants to solve problems involving circles	Geometry: SE/TE: 790-797 TE: 797A
	AR.9-12.LF.AI.3.9 (LF.3.AI.9) Describe the effects of parameter changes, slope and/or y-intercept, on graphs of linear functions and vice versa	Algebra 1: SE/TE: 308-312 Geometry: SE/TE: 189-195 TE: 196A Lesson Resources Algebra 2: SE/TE: 77-80, 81-88 TE: 88A, 80A Lesson Resources
	AR.9-12.LF.AI.3.7 (LF.3.AI.7) Determine by using slope whether a pair of lines are parallel, perpendicular, or neither	Algebra 1: SE/TE: 330-331 Geometry: SE/TE: 197-204 TE: 204A Algebra 2: SE/TE: 85
	AR.9-12.R.G.4.6 (R.4.G.6) Solve problems using inscribed and circumscribed figures	Geometry: SE/TE: 301, 303, 667, 766
CC.9-12.G.C. 3 Understand and apply theorems about circles. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.	AR.9-12.R.G.4.5 (R.4.G.5) Investigate and use the properties of angles (central and inscribed) arcs, chords, tangents, and secants to solve problems involving circles	Geometry: SE/TE: 790-797 TE: 797A Lesson Resources
	AR.9-12.R.G.4.6 (R.4.G.6) Solve problems using inscribed and circumscribed figures	Geometry: SE/TE: 301, 303, 667, 766
CC.9-12.G.C. 4 (+) Understand and apply theorems about circles. Construct a tangent line from a point outside a given circle to the circle.	AR.9-12.R.G.4.5 (R.4.G.5) Investigate and use the properties of angles (central and inscribed) arcs, chords, tangents, and secants to solve problems involving circles	Geometry: SE/TE: 790-797 TE: 797A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.G.C.5 Find arc lengths and areas of sectors of circles. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.	AR.9-12.R.G.4.5 (R.4.G.5) Investigate and use the properties of angles (central and inscribed) arcs, chords, tangents, and secants to solve problems involving circles	Geometry: SE/TE: 790-797 TE: 797A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.G.GPE. 2 Translate between the geometric description and the equation for a conic section. Derive the equation of a parabola given a focus and directrix.	AR.9-12.C.PCT.3.1 (C.3.PCT.1) Identify, graph, write, and analyze equations of conic sections, using properties such as symmetry, intercepts, foci, asymptotes, and eccentricity, and when appropriate, use technology	Algebra 2: SE/TE: 614-620, 622-629, 630- 636, 638-644, 645-652, 653-660 TE: 620A, 621, 629A, 636A, 644A, 652A, 660A Lesson Resources
CC.9-12.G.GPE. 3 (+) Translate between the geometric description and the equation for a conic section. Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.	AR.9-12.C.PCT.3.1 (C.3.PCT.1) Identify, graph, write, and analyze equations of conic sections, using properties such as symmetry, intercepts, foci, asymptotes, and eccentricity, and when appropriate, use technology	Algebra 2: SE/TE: 614-620, 622-629, 630- 636, 638-644, 645-652, 653-660 TE: 620A, 621, 629A, 636A, 644A, 652A, 660A
CC.9-12.G.GPE. 4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{ } 3)$ lies on the circle centered at the origin and containing the point $(0,2)$.	AR.9-12.CGT.G.5.1 (CGT.5.G.1) Use coordinate geometry to find the distance between two points, the midpoint of a segment, and the slopes of parallel, perpendicular, horizontal, and vertical lines	Geometry: SE/TE: 400-405, 406-412, 418 TE: 405A, 412A Lesson Resources
	AR.9-12.CGT.G.5.5 (CGT.5.G.5) Determine, given a set of points, the type of figure based on its properties (parallelogram, isosceles triangle, trapezoid)	```Geometry: SE/TE: 250-256, 359-366, 389- 397 TE: 366A, 397A, 256A Lesson Resources```
CC.9-12.G.GPE. 5 Use coordinates to prove simple geometric theorems algebraically. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the	AR.9-12.M.G.3.5 (M.3.G.5) Identify and apply properties of and theorems about parallel and perpendicular lines to prove other theorems and perform basic Euclidean constructions	Geometry: SE/TE: 164-169 TE: 169A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
equation of a line parallel or perpendicular to a given line that passes through a given point).	AR.9-12.LF.AI.3.7 (LF.3.AI.7) Determine by using slope whether a pair of lines are parallel, perpendicular, or neither	Algebra 1: SE/TE: 330-331
	Geometry: SE/TE: 197-204	
		TE: 204A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.M.G.3.3 (M.3.G.3) Relate changes in the measurement of one attribute of an object to changes in other attributes	Geometry: SE/TE: 310-315
	AR.9-12.SEI.AI.2.7 (SEI.2.AI.7) Use coordinate geometry to represent and/or	Geometry: SE/TE: 400-405

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.G.GMD.3 Explain volume formulas and use them to solve problems. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.*	AR.9-12.M.G.3.2 (M.3.G.2) Apply, using appropriate units, appropriate formulas (area, perimeter, surface area, volume) to solve application problems involving polygons, prisms, pyramids, cones, cylinders, spheres as well as composite figures, expressing solutions in both exact and approximate forms	Geometry: SE/TE: 59-67, 688-695, 699-707,

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.G.MG.3 Apply geometric concepts in modeling situations. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*	AR.9-12.MM.TM.3.1 (MM.3.TM.1) Establish connections between tables and graphs and the symbolic form using geometric and algebraic models (quadratic, rational, etc.)	Geometry: SE/TE: 464-466
	AR.8.G.11.1 (G.11.8.1) Spatial Visualization and Models: Using isometric dot paper interpret and draw different views of buildings	Geometry: SE/TE: 5-10

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.DA.TDM.5.1 (DA.5.TDM.1) Read, interpret, and analyze graphical representations of data used in various contexts (e.g., science reasoning, newspaper graphs)	Algebra 1: SE/TE: 738-744 Algebra 2: SE/TE: 711-718, 719-724, 725- 730, 739-745
	AR.9-12.DIP.AI.5.10 (DIP.5.AI.10) Communicate real world problems graphically, algebraically, numerically and verbally	Algebra 1: SE/TE: 732-737, 746-751, 753759 TE: 737A Lesson Resources Algebra 2: SE/TE: 711-718
	AR.9-12.S.TFM.4.2 (S.4.TFM.2) Calculate and interpret statistical problems using measures of central tendencies and graphs: -- histograms, -- normal curve	Algebra 1: SE/TE: 738-744 Algebra 2: SE/TE: 711-718
CC.9-12.S.ID. 2 Summarize, represent, and interpret data on a single count or measurement variable. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.*	AR.9-12.DS.S.5.2 (DS.1.S.2) Compute and use mean, mode, weighted mean, geometric mean, harmonic mean, range, quartiles, variance, and standard deviation	Algebra 1: SE/TE: 738-744, 746-749 TE: 744A Lesson Resources Algebra 2: SE/TE: 711-718, 719-721
	AR.9-12.DAP.AII.6.5 (DAP.6.AII.5) Compute and explain measures of spread (range, percentiles, variance, standard deviation)	Algebra 1: SE/TE: 738-744, 746-749 TE: 744A Lesson Resources Algebra 2: SE/TE: 711-718, 719-721
	AR.9-12.DIP.AI.5.4 (DIP.5.AI.4) Determine the effects of changes in the data set on the measures of central tendency	Algebra 1: SE/TE: 738-744 Algebra 2: SE/TE: 711-718
	AR.9-12.DIP.AI.5.5 (DIP.5.AI.5) Use two or more graphs (i.e., box-and- whisker, histograms, scatter plots) to compare data sets	Algebra 1: SE/TE: 336,746-751 Algebra 2: SE/TE: 93, 714-718

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.DIP.AI.5.6 (DIP.5.AI.6) Construct and interpret a cumulative frequency histogram in real life situations	Algebra 1: SE/TE: 732-737, TE: 737A Lesson Resources
	AR.9-12.PS.TM.4.2 (PS.4.TM.2) Describe and summarize data	Algebra 1: SE/TE: 732-737, 738-744 numerically using central tendency variation, position statistics, and distributions

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
	AR.9-12.DAP.AII.6.5 (DAP.6.AII.5) Compute and explain measures of spread (range, percentiles, variance, standard deviation)	Algebra 1: SE/TE: 738-744, 746-749 TE: 744A Lesson Resources Algebra 2: SE/TE: 711-718, 719-721
	AR.9-12.DIP.AI.5.5 (DIP.5.AI.5) Use two or more graphs (i.e., box-and- whisker, histograms, scatter plots) to compare data sets	Algebra 1: SE/TE: 336,746-751 Algebra 2: SE/TE: 93, 714-718 TE: 125
	AR.9-12.DIP.AI.5.6 (DIP.5.AI.6) Construct and interpret a cumulative frequency histogram in real life situations	Algebra 1: SE/TE: 732-737 TE: 737A Lesson Resources
(Continued) CC.9-12.S.ID. 3 Summarize, represent, and interpret data on a single count or measurement variable. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).*	AR.9-12.DA.TDM.5.4 (DA.5.TDM.4) Investigate and analyze the characteristics of normal and skewed distributions	Algebra 2: SE/TE: 739-744 TE: 745A Lesson Resources
	AR.9-12.DA.TDM.5.5 (DA.5.TDM.5) Determine and interpret the measures of spread of a data set (e.g., standard deviation, range, percentiles, variance)	Algebra 1: SE/TE: 738-744 Algebra 2: SE/TE: 711-718
	AR.9-12.S.TFM.4.2 (S.4.TFM.2) Calculate and interpret statistical problems using measures of central tendencies and graphs: -- histograms, -- normal curve	Algebra 1: SE/TE: 738-744 Algebra 2: SE/TE: 711-718
	AR.9-12.S.TFM.4.4 (S.4.TFM.4) Investigate and analyze the characteristics of normal and skewed distributions	Algebra 2: SE/TE: 739-744 TE: 745A Lesson Resources
CC.9-12.S.ID. 4 Summarize, represent, and interpret data on a single count or measurement variable. Use the mean and standard deviation of a data set to fit it to a	AR.9-12.SI.S.10.1 (SI.10.S.1) Explore the characteristics and applications of the normal distribution and standardized scores	Algebra 2: SE/TE: 739-745 TE: 745A-749 Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.*	AR.9-12.DAP.AII.6.6 (DAP.6.AII.6) Describe the characteristics of a Gaussian normal distribution	Algebra 2: SE/TE: 739-742
	AR.9-12.DA.TDM.5.4 (DA.5.TDM.4) Investigate and analyze the characteristics of normal and skewed distributions	Algebra 2: SE/TE: 739-744 TE: 745A Lesson Resources
(Continued) CC.9-12.S.ID. 4 Summarize, represent, and interpret data on a single count or measurement variable. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.*	AR.9-12.DA.TDM.5.5 (DA.5.TDM.5) Determine and interpret the measures of spread of a data set (e.g., standard deviation, range, percentiles, variance)	Algebra 1: SE/TE: 738-744 Algebra 2: SE/TE: 711-718
	AR.9-12.S.TFM.4.4 (S.4.TFM.4) Investigate and analyze the characteristics of normal and skewed distributions	Algebra 2: SE/TE: 739-744 TE: 745A Lesson Resources
CC.9-12.S.ID. 5 Summarize, represent, and interpret data on two categorical and quantitative variables. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.*	AR.9-12.PS.AC.1.2 (PS.1.AC.2) Conduct and interpret simple probability experiments using: -- manipulatives (spinners, dice, cards, coins), -- simulations (using random number tables, graphing calculators, or computer software)	Algebra 1: TE: 775,782A Lesson Resources Geometry: SE/TE: 824-829, 830-835 TE: 829A, 835A Lesson Resources Algebra 2: TE: 682, 694, 702, 705
CC.9-12.S.ID. 6 Represent data on two quantative variables on a scatter plot, and describe how the variables are related.	No Matches in Arkansas Frameworks	Algebra 1: SE/TE: 336-343 Algebra 2: SE/TE: 92-98

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.S.ID.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.* (Continued) CC.9-12.S.ID.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.*	AR.9-12.DAP.AII.6.1 (DAP.6.AII.1) Find regression line for scatter plot, using appropriate technology, and interpret the correlation coefficient	Algebra 1: SE/TE: 336-343 TE: 343A Lesson Resources Algebra 2: SE/TE: 92-98, TE: 98A Lesson Resources
	AR.9-12.DAP.AII.6.3 (DAP.6.AII.3) Find the quadratic curve of best fit using appropriate technology	Algebra 2: SE/TE: 211
	AR.9-12.DIP.AI.5.1 (DIP.5.AI.1) Construct and use scatter plots and line of best fit to make inferences in real life situations	Algebra 1: SE/TE: 336-343 TE: 343A Lesson Resources Algebra 2: SE/TE: 92-98 TE: 98A Lesson Resources
	AR.9-12.DIP.AI.5. 7 (DIP.5.AI.7) Recognize linear functions and non-linear functions by using a table or a graph	Algebra 1: SE/TE: 247-250 Algebra 2: SE/TE: 284
	AR.9-12.PS.AC.1.5 (PS.1.AC.5) Interpret and evaluate, with and without appropriate technology, graphical and tabular data displays for: -- consistency with the data, -- appropriateness of type of graph or data display, -- scale, -- overall message	Algebra 1: SE/TE: 726-731, 732-737, 738- 744, 746-751, 753-759 TE: 731A Lesson Resources, 737A Lesson Resources, 751A Lesson Resources, 759A Lesson Resources Geometry: SE/TE: 83,111-112, 658, 660, 748 Algebra 2: SE/TE: 711-718 TE: 718A Lesson Resources
	AR.9-12.LF.TM.1.3 (LF.1.TM.3) Make inferences and predictions using: -- recursion on the table, -- inspection on the graph, -- algebraic manipulation on the model	Algebra 1: SE/TE: 253-255 Algebra 2: SE/TE: 92-98, 209-213, 331-334, 434-441, 565-566

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.S.ID.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.*	AR.9-12.EF.TM.2.4 (EF.2.TM.4) Make inferences and predictions using: -- recursion on the table, -- inspection of the graph, -- algebraic manipulation on the model	Algebra 1: SE/TE: 253-255 Algebra 2: SE/TE: 92-98, 209-213, 331-334, 434-441, 565-566
	AR.9-12.MM.TM.3.3 (MM.3.TM.3) Make inferences and predictions using: -- recursion on the table, -- inspection of the graph, - - algebraic manipulation on the model	Algebra 1: SE/TE: 253-255 Algebra 2: $\begin{aligned} & \text { SE/TE: 92-98, 209-213, 331-334, } \\ & 434-441,565-566 \end{aligned}$
	AR.9-12.DAP.AII.6.4 (DAP.6.AII.4) Identify strengths and weaknesses of using regression equations to approximate data	Algebra 1: SE/TE: 336-337, 339, 340 Algebra 2: SE/TE: 94
CC.9-12.S.ID.6b Informally assess the fit of a function by plotting and analyzing residuals.*	AR.9-12.DA.S.5.5 (DA.5.S.5) Develop, use, and explain application and limitations of linear models and line of best fit (linear regression) in a variety of contexts	Algebra 1: SE/TE: 336-343 Algebra 2: SE/TE: 92-98
	AR.9-12.DIP.AI.5.1 (DIP.5.AI.1) Construct and use scatter plots and line of best fit to make inferences in real life situations	Algebra 1: SE/TE: 336-343 Algebra 2: SE/TE: 92-98
	AR.9-12.DAP.AII.6.4 (DAP.6.AII.4) Identify strengths and weaknesses of using regression equations to approximate data	Algebra 1: SE/TE: 336-337, 339, 340 Algebra 2: SE/TE: 94
CC.9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear association.*	AR.9-12.DA.S.5.5 (DA.5.S.5) Develop, use, and explain application and limitations of linear models and line of best fit (linear regression) in a variety of contexts	Algebra 1: SE/TE: 336-343 Algebra 2: SE/TE: 92-98

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.DAP.AII.6.1 (DAP.6.AII.1) Find regression line for scatter plot, using appropriate technology, and interpret the correlation coefficient	Algebra 1: SE/TE: 336-343 TE: 343A Lesson Resources
Algebra 2:		

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
	AR.9-12.LF.AC.2.4 (LF.2.AC.4) Interpret the rate of change (slope) and intercepts within the context of everyday life	Algebra 1: SE/TE: 294-300 Geometry: SE/TE: 189-196 TE: 196A Lesson Resources. Algebra 2: SE/TE: 447, 437, 500-504
CC.9-12.S.ID. 8 Interpret linear models. Compute (using technology) and interpret the correlation coefficient of a linear fit.*	AR.9-12.DA.S.5.4 (DA.5.S.4) Identify possible correlations between variables in a data set	Algebra 1: SE/TE: 336-343 TE: 343A Lesson Resources Algebra 2: SE/TE: 92-98 TE: 98A Lesson Resources
	AR.9-12.SI.S.11.4 (SI.11.S.4) Calculate and interpret the correlation coefficient of a set of data	Algebra 1: SE/TE: 336-343 TE: 343A Lesson Resources Algebra 2: SE/TE: 92-98 TE: 98A Lesson Resources
	AR.9-12.DAP.AII.6.2 (DAP.6.AII.2) Interpret and use the correlation coefficient to assess the strength of the linear relationship between two variables	Algebra 1: SE/TE: 336-343 TE: 343A Lesson Resources Algebra 2: SE/TE: 92-98 TE: 98A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.DAP.AII.6.4 (DAP.6.AII.4) Identify strengths and weaknesses of using regression equations to approximate data	Algebra 1: SE/TE: 336-343 TE: 343A Lesson Resources
	Algebra 2: SE/TE: 92-98	

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.S.IC. 1 Understand and evaluate random processes underlying statistical experiments. Understand statistics as a process for making inferences about population parameters based on a random sample from that population.*	AR.9-12.DA.S.5.6 (DA.5.S.6) Use data from samples to make inferences about a population and determine whether claims are reasonable or unreasonable	Algebra 1: SE/TE: 753-759 Algebra 2: SE/TE: 725-730
	AR.9-12.DIP.AI.5.11 (DIP.5.AI.11) *Explain how sampling methods, bias, and phrasing of questions in data collection impact the conclusions	Algebra 1: SE/TE: 753-759 Algebra 2: SE/TE: 725-730
	AR.9-12.PS.TM.4.1 (PS.4.TM.1) Formulate questions that can be addressed with data and, with appropriate technology, collect, organize, and display relevant data to answer the questions	Algebra 1: SE/TE: 785 Geometry: SE/TE: 864-867 TE: 867A Lesson Resources Algebra 2: SE/TE: 739-745 TE: 745A-745B Lesson Resources
	AR.9-12.S.TFM.4.1 (S.4.TFM.1) Collect data using random sampling	Algebra 1: SE/TE: 755 Algebra 2: SE/TE: 725 TE: 755
CC.9-12.S.IC. 2 Understand and evaluate random processes underlying statistical experiments. Decide if a specified model is consistent with results from a given datagenerating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails ion a row cause you to question the model?	AR.9-12.DA.S.5.8 (DA.5.S.8) Design, conduct, interpret, and justify the results of a probability experiment, sample, or statistical simulation	Algebra 1: SE/TE: 775 Geometry: SE/TE: 874 Algebra 2: SE/TE: 685
	AR.9-12.DC.S.2.4 (DC.2.S.4) Describe simple random sampling	Algebra 1: SE/TE: 755 Algebra 2: SE/TE: 725

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
	AR.9-12.PS.AC.1.2 (PS.1.AC.2) Conduct and interpret simple probability experiments using: -- manipulatives (spinners, dice, cards, coins), -- simulations (using random number tables, graphing calculators, or computer software)	Algebra 1: TE: 782A Geometry: SE/TE: 824-829, 830-835 TE: 829A, 835A Lesson Resources. Algebra 2: TE: 682, 694, 702, 705
	AR.9-12.PS.TM.4.1 (PS.4.TM.1) Formulate questions that can be addressed with data and, with appropriate technology, collect, organize, and display relevant data to answer the questions	Algebra 1: SE/TE: 785 Geometry: SE/TE: 864-867 TE: 867A Lesson Resources. Algebra 2: SE/TE: 739-745 TE: 745A-745B Lesson Resources.
CC.9-12.S.IC. 3 Make inferences and justify conclusions from sample surveys, experiments, and observational studies. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.*	AR.9-12.DC.S.2.4 (DC.2.S.4) Describe simple random sampling	Algebra 1: SE/TE: 755 Algebra 2: SE/TE: 725
	AR.9-12.PS.TM.4.4 (PS.4.TM.4) Make inferences and predictions using: -- recursion on the table, -- inspection of the graph, -- algebraic manipulation on the model	Algebra 1: SE/TE: 253-255 Algebra 2: SE/TE: 92-98, 209-213, 331-334, 434-441, 565-566
(Continued) CC.9-12.S.IC. 3 Make inferences and justify conclusions from sample surveys, experiments, and observational studies. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.*	AR.9-12.DA.TDM.5.2 (DA.5.TDM.2) Identify biases that affect the validity of a data set	Algebra 1: SE/TE: 755 Algebra 2: SE/TE: 726

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.S.IC. 4 Make inferences and justify conclusions from sample surveys, experiments, and observational studies. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.*	AR.9-12.DC.S.2.8 (DC.2.S.8) Plan and conduct a survey to answer a question or address an issue, identify possible sources of bias, and describe ways to reduce bias	Algebra 1: SE/TE: 753-756 Algebra 2: SE/TE: 725-727
	AR.9-12.PS.TM.4.4 (PS.4.TM.4) Make inferences and predictions using: -- recursion on the table, -- inspection of the graph, -- algebraic manipulation on the model	Algebra 1: SE/TE: 253-255 Algebra 2: SE/TE: 92-98, 209-213, 331-334, 434-441, 565-566
CC.9-12.S.IC. 5 Make inferences and justify conclusions from sample surveys, experiments, and observational studies. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.*	AR.9-12.DC.S.3.5 (DC.3.S.5) Use simulations to develop an understanding of the Central Limit Theorem and its importance in confidence intervals and tests of significance	Algebra 1 SE/TE: 775 Algebra 2: SE/TE: 748-749
	AR.9-12.PS.TM.4.4 (PS.4.TM.4) Make inferences and predictions using: -- recursion on the table, -- inspection of the graph, -- algebraic manipulation on the model	Algebra 1: SE/TE: 253-255 Algebra 2: SE/TE: 92-98, 209-213, 331-334, 434-441, 565-566
CC.9-12.S.IC. 6 Make inferences and justify conclusions from sample surveys, experiments, and observational studies. Evaluate reports based on data.*	AR.9-12.DC.S.3.3 (DC.3.S.3) Apply statistical principles and methods in sample surveys; identify difficulties	Algebra 1: SE/TE: 755 Algebra 2: SE/TE: 725
	AR.9-12.PS.TM.4.4 (PS.4.TM.4) Make inferences and predictions using: -- recursion on the table, -- inspection of the graph, -- algebraic manipulation on the model	Algebra 1: SE/TE: 253-255 Algebra 2: SE/TE: 92-98, 209-213, 331-334, 434-441, 565-566

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.S.CP.1 Understand independence and conditional probability and use them to interpret data. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and,"	AR.9-12.P.S.6.6 (P.6.S.6) Find conditional probabilities for dependent, independent, and "nutually exclusive events	Algebra 1: TE: 783

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
probability of A, and the conditional probability of B given A is the same as the probability of B.*	AR.9-12.PS.AC.1.3 (PS.1.AC.3) Compute and display theoretical and experimental probability including the use of Venn diagrams: -- simple, -- complementary, -- compound (mutually exclusive, inclusive, independent and dependent events)	Algebra 1: SE/TE: 769-772, 776-779 Geometry: SE/TE: 844-849, 856-861
	AR.9-12.CT.TFM.3.5 (CT.3.TFM.5) Calculate probabilities of mutually exclusive events, independent events, and dependent events	Algebra 2: SE/TE: 681-684, 688-690
SE/TE: 844-849		
TE: 849A Lesson Resources		

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, © 2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.S.CP. 4 Understand independence and conditional probability and use them to interpret data. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.*	AR.9-12.P.S.6.6 (P.6.S.6) Find conditional probabilities for dependent, independent, and mutually exclusive events	Algebra 1: TE: 783 Geometry: SE/TE: 844-849, 856-861 TE: 861A Lesson Resources Algebra 2: SE/TE: 696, 702

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.S.CP. 5 Understand independence and conditional probability and use them to interpret data. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.*	AR.9-12.P.S.6.6 (P.6.S.6) Find conditional probabilities for dependent, independent, and mutually exclusive events	Algebra 1: TE: 783 Geometry: SE/TE: 844-849, 856-861 TE: 861A Lesson Resources Algebra 2: SE/TE: 696, 702
	AR.9-12.PS.AC.1.3 (PS.1.AC.3) Compute and display theoretical and experimental probability including the use of Venn diagrams: -- simple, -- complementary, -- compound (mutually exclusive, inclusive, independent and dependent events)	Algebra 1: SE/TE: 769-772, 776-779 Geometry: SE/TE: 844-849, 856-861 Algebra 2: SE/TE: 681-684, 688-690
	AR.9-12.CT.TFM.3.5 (CT.3.TFM.5) Calculate probabilities of mutually exclusive events, independent events, and dependent events	Algebra 1: SE/TE: 776-777 Geometry: SE/TE: 844-849 TE: 849A Lesson Resources Algebra 2: SE/TE: 688-690
CC.9-12.S.CP. 6 Use the rules of probability to compute probabilities of compound events in a uniform probability model. Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.*	AR.9-12.P.S.6.6 (P.6.S.6) Find conditional probabilities for dependent, independent, and mutually exclusive events	Algebra 1: TE: 783 Geometry: SE/TE: 844-849, 856-861 TE: 861A Lesson Resources. Algebra 2: SE/TE: 696, 702

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
CC.9-12.S.CP. 7 Use the rules of probability to compute probabilities of compound events in a uniform probability model. Apply the Addition Rule, $\mathbf{P}(A$ or $B)=P(A)+P(B)$ - $P(A$ and $B)$, and interpret the answer in terms of the model.*	AR.9-12.P.S.6.6 (P.6.S.6) Find conditional probabilities for dependent, independent, and mutually exclusive events	Algebra 1: TE: 783 Geometry: SE/TE: 844-849, 856-861 TE: 861A Lesson Resources Algebra 2: SE/TE: 696, 702
	AR.9-12.PS.AC.1.3 (PS.1.AC.3) Compute and display theoretical and experimental probability including the use of Venn diagrams: -- simple, -- complementary, -- compound (mutually exclusive, inclusive, independent and dependent events)	Algebra 1: SE/TE: 769-772, 776-779, Geometry: SE/TE: 844-849, 856-861 Algebra 2: SE/TE: 681-684, 688-690
	AR.9-12.CT.TFM.3.1 (CT.3.TFM.1) Use fundamental counting principles of addition and multiplication to solve problems	Algebra 1: SE/TE: 763 Geometry: SE/TE: 836 Algebra 2: SE/TE: 674

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.S.CP. 8 (+) Use the rules of probability to compute probabilities of compound events in a uniform probability model. Apply the general Multiplication Rule in a uniform probability model, $\mathbf{P (A}$ and $B)=[P(A)] x[P(B \mid A)]$ $=[P(B)] \times[P(A \mid B)]$, and interpret the answer in terms of the model.*	AR.9-12.P.S.6.6 (P.6.S.6) Find conditional probabilities for dependent, independent, and mutually exclusive events	Algebra 1: TE: 783 Geometry: SE/TE: 844-849, 856-861 TE: 861A Algebra 2: SE/TE: 696,702
	AR.9-12.PS.AC.1.3 (PS.1.AC.3) Compute and display theoretical and experimental probability including the use of Venn diagrams: -- simple, -- complementary, -- compound (mutually exclusive, inclusive, independent and dependent events)	Algebra 1: SE/TE: 769-772, 776-779, Geometry: SE/TE: 844-849, 856-861 Algebra 2: SE/TE: 681-684, 688-690
	AR.9-12.CT.TFM.3.1 (CT.3.TFM.1) Use fundamental counting principles of addition and multiplication to solve problems	Algebra 1: SE/TE: 763 Geometry: SE/TE: 836 Algebra 2: SE/TE: 674

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012		
CC.9-12.S.CP.9 (+) Use the rules of probability to compute probabilities of compound events in a uniform probability model. Use permutations and combinations to compute probabilities of compound events and solve problems.*	AR.9-12.P.S.6.1 (P.6.S.1) Understand the counting principle, permutations and combinations and use them to solve problems	Algebra 1: SE/TE: 762-768 TE: 768A Lesson Resources		
	Algebra 2: SE/TE: 674-680 Compare and contrast			
permutations and				
combinations			\quad	TE: 680A Lesson Resources
:---				

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core © 2012
(Continued) CC.9-12.S.CP. 9 (+) Use the rules of probability to compute probabilities of compound events in a uniform probability model. Use permutations and combinations to compute probabilities of compound events and solve problems.*	AR.9-12.PS.TM.4.3 (PS.4.TM.3) Use counting methods, permutations, and combinations to evaluate the likelihood of events occurring	Algebra 2: SE/TE: 683
	AR.9-12.CT.TFM.3.2 (CT.3.TFM.2) Evaluate expressions indicating permutations or combinations, with and without technology	Algebra 2: SE/TE: 676
	AR.9-12.CT.TFM.3.3 (CT.3.TFM.3) Evaluate expressions involving distinguishable permutations	Studied in 4th year course
	AR.9-12.CT.TFM.3.4 (CT.3.TFM.4) Distinguish between and use permutations and combinations to solve problems	Studied in 4th year course
CC.9-12.S.MD. 1 (+) Calculate expected values and use them to solve problems. Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.*	AR.9-12.P.S.7.1 (P.7.S.1) Compare and contrast independent and dependent random variables	Algebra 1: SE/TE: 777-782 TE: 782A Lesson Resources Algebra 2: SE/TE: 688-691 TE: 753
	AR.9-12.P.S.7.1 (P.7.S.1) Compare and contrast independent and dependent random variables	Algebra 1: SE/TE: 777-782 Algebra 2: SE/TE: 687,538-691 TE: 753
	AR.9-12.P.S.7.2 (P.7.S.2) Find the standard deviation for sums and differences of independent random variables	Algebra 1: TE:745 Algebra 2: SE/TE: 719-724 TE: 724A Lesson Resources

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core C2012
CC.9-12.S.MD.2 (+) Calculate expected values and use them to solve problems. Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.*	No Matches in Arkansas Frameworks	Algebra 2: SE/TE: 739-742
TE: 694		

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

Common Core State Standards for Mathematics	Arkansas Student Learning Expectations for Mathematics	Pearson Algebra 1, Geometry, Algebra 2, Common Core ©2012
CC.9-12.S.MD.4 (+) Calculate expected values and use them to solve problems. Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected	Geometry: households?*	SE/TE: 864-865

Pearson Algebra 1, Geometry, and Algebra 2 Common Core, ©2012
to the Common Core State Standards Comparison with Arkansas Student Learning Expectations for Mathematics

$\begin{array}{l}\text { Common Core State Standards } \\ \text { for Mathematics }\end{array}$	$\begin{array}{l}\text { Arkansas Student } \\ \text { Learning Expectations } \\ \text { for Mathematics }\end{array}$	$\begin{array}{l}\text { Pearson Algebra 1, Geometry, } \\ \text { Algebra 2, Common Core } \\ \text { ©2012 }\end{array}$
$\begin{array}{l}\text { CC.9-12.S.MD.5b (+) Evaluate } \\ \text { and compare strategies on the } \\ \text { basis of expected values. For } \\ \text { example, compare a high- } \\ \text { deductible versus a low- } \\ \text { deductible automobile } \\ \text { insurance policy using various, } \\ \text { but reasonable, chances of } \\ \text { having a minor or a major } \\ \text { accident.* }\end{array}$	$\begin{array}{l}\text { No Matches in Arkansas } \\ \text { Frameworks }\end{array}$	$\begin{array}{l}\text { Geometry: } \\ \text { SE/TE: 864-867 }\end{array}$
TE: 867A Lesson Resources		

