Speed Time \& Distance Questions With Solution

1. Hemant covers a certain distance with his own speed, but when he reduces his speed by $10 \mathrm{~km} / \mathrm{hr}$ his time duration for the journey increases by 40 hrs , while if he increases his speed by $5 \mathrm{~km} / \mathrm{hr}$ from his original speed he takes 10 hrs less than the original time taken. Find the distance covered by him.
A) 1200 km
B) 1500 km
C) 1350 km
D) 1400 km
E) None

View Answer
 Option B
 Solution:

Let distance be x km and speed be $\mathrm{y} \mathrm{km} / \mathrm{hr}$
$\mathrm{x} /(\mathrm{y}-10)-\mathrm{x} / \mathrm{y}=40==>\mathrm{x}=4 \mathrm{y}(\mathrm{y}-10)$-(1)
$x / y-x /(y+5)=10==>x=2 y(y+5)$
Equate 1 and 2
$4 y(y-10)=2 y(y+5)$
$2 \mathrm{y}-20=\mathrm{y}+5==>\mathrm{y}=25 \mathrm{~km} / \mathrm{hr}$
Then $\mathrm{x}=2 * 25(25+5)=50 * 30=1500 \mathrm{~km}$
2. A train met with an accident 60 km away from station A. It completed the remaining journey at $5 / 6$ th of the original speed and reached station B 1 hr 12 mins late. Had the accident taken place 60 km further, it would have been only 1 hr late. what was the original speed of the train?
A) $50 \mathrm{~km} / \mathrm{hr}$
B) $45 \mathrm{~km} / \mathrm{hr}$
C) $60 \mathrm{~km} / \mathrm{hr}$
D) $55 \mathrm{~km} / \mathrm{hr}$
E) None

View Answer
Option C
Solution:
Let the original speed be 6 x .
Travelling 60 km at $5 / 6$ th of original speed cost 12 mins etc.
$60 / 5 \mathrm{x}=60 / 6 \mathrm{x}+12 / 60$
==>x=10
Original speed $6 x=60 \mathrm{~km} / \mathrm{hr}$.
3. Two man start together to walk a certain distance, one at $4 \mathrm{~km} / \mathrm{hr}$ and another at $5 \mathrm{~km} / \mathrm{hr}$. The former arrives half an hour before the latter. Find the distance.
A) 10 km
B) 15 km
C) 20 km
D) 8 km
E) None

View Answer
 Option A
 Solution:

If the distance be xkm , then
$\mathrm{x} / 4-\mathrm{x} / 5=1 / 2$
$(5 x-4 x) / 20=1 / 2$
$\mathrm{x} / 20=1 / 2==>\mathrm{x}=10 \mathrm{~km}$
4. In a flight of 600 km , an aircraft was slowed down due to bad weather. Its average speed for the trip was reduced by $200 \mathrm{~km} / \mathrm{hr}$ and the time of flight increased by 30 minutes. The duration of the flight is:
A) 2 hrs
B) 1 hr 30 min
C) 2 hrs 15 min
D) 1 hr
E) None

View Answer
 Option D
 Solution:

Let the duration of the flight be x hrs.
Then, $600 / \mathrm{x}-600 /(\mathrm{x}+1 / 2)=200$
$600 / x-1200 / 2 x+1=200$
$\mathrm{X}(2 \mathrm{x}+1)=3$
$2 x^{2}+x-3=0$
$\mathrm{X}=1 \mathrm{hr}$.
5. Two racers start running towards each other, one from A to B and another from B to A. They cross each other after one hour and the first racer reaches B, $5 / 6$ hour before the second racer reaches
A. If the distance between A and B is 50 km . what is the speed of the slower racer?
A) $15 \mathrm{~km} / \mathrm{hr}$
B) $20 \mathrm{~km} / \mathrm{hr}$
C) $25 \mathrm{~km} / \mathrm{hr}$
D) $30 \mathrm{~km} / \mathrm{hr}$
E) None

View Answer

Option B
Solution:
Let second racer takes x hr with speed s 2
First racer takes $x-5 / 6 \mathrm{hr}$ with speed s1
Total distance $=50 \mathrm{~km}$
S1 $=50 /(x-(5 / 6))$
S2 $=50 / \mathrm{x}$
As they cross each other in 1 hr ...
Total speed $=\mathrm{s} 1+\mathrm{s} 2$
Now, T = D / S
$50 /(\mathrm{s} 1+\mathrm{s} 2)=1$
$\mathrm{x}=5 / 2,1 / 3$
Put $\mathrm{x}=5 / 2$ in $\mathrm{s} 2 \rightarrow 20 \mathrm{~km} / \mathrm{hr}$
6. $\quad P$ and Q run at the speed $40 \mathrm{~m} / \mathrm{s}$ and $20 \mathrm{~m} / \mathrm{s}$ resp on the circular track of 800 m , as its circumference, when would the P and Q meet for the first time at the starting point if they start simultaneously from the same point.
A) 40 sec
B) 50 sec
C) 55 sec
D) 60 sec
E) None

```
View Answer
Option A
Solution:
Time taken by P to complete one round
800/40=20
Time taken by Q to complete one round
800/20=40
LCM of \(2040=40\)
Every 40 sec they would be together at the starting point.
```

7. The speeds of Ram and Raj are $30 \mathrm{~km} / \mathrm{h}$ and $40 \mathrm{~km} / \mathrm{h}$. Initially Raj is at a place L and Ram is at a place M . The distance between L and M is 650 km . Ram started his journey 3 hours earlier than Raj to meet each other. If they meet each other at a place P somewhere between L and M, then the distance between P and M is?
A) 225 km
B) 300 km
C) 250 km
D) 330 km
E) None

View Answer
 Option D
 Solution:

If the 1 st 3 hr Ram covers 90 km
So the rest $650-90=560 \mathrm{~km}$
Now they both travel together towards each other
So, the time is $560 / 70=8 \mathrm{hr}$
Then ram travel total $3+8=11 \mathrm{hrs}$
Thus the distance travelled by Ram 11*30=330km
8. The ratio between the speed of a car and a bike is $16: 15$ respectively. Also, a bus covered a distance of 480 km in 8 hrs . The speed of the bus is three-fourth the speed of the car. How much distance will the bike cover in 6 h ?
A) 320 km
B) 360 km
C) 450 km
D) 435 km
E) None

View Answer
 Option C
 Solution:

Speed of bus $=480 / 8=60 \mathrm{~km} / \mathrm{h}$
Speed of car $=(60 * 4) / 3=80 \mathrm{~km} / \mathrm{h}$
Speed of car : Speed of bike $=16: 15$
Speed of bike $=80 / 16 * 15=75 \mathrm{~km} / \mathrm{h}$
Distance covered by bike in $6 \mathrm{hr}=75 \times 6=450 \mathrm{~km}$
9. How many seconds will a train 50 m in length, travelling at the rate of 42 km an hour, rate to pass another train 80 m long, proceeding in the same direction at the rate of 30 km an hour?
A) 45 sec
B) 39 sec
C) 50 sec
D) 55 sec
E) None

View Answer
Option B
Solution:
Relative speed $=42-30=12 \mathrm{~km} / \mathrm{hr}$
Time $=(50+80) * 18 / 12 * 5$
$=130 * 18 / 12 * 5==>13 * 3$
$=39 \mathrm{sec}$.
10. A man rides his bike 20 km at an average speed of $8 \mathrm{~km} / \mathrm{hr}$ and again travels 45 km at an average speed of $10 \mathrm{~km} / \mathrm{hr}$. What is his average speed for the ride approximately?
A) $10.8 \mathrm{~km} / \mathrm{hr}$
B) $8.5 \mathrm{~km} / \mathrm{hr}$
C) $9.3 \mathrm{~km} / \mathrm{hr}$
D) $10.2 \mathrm{~km} / \mathrm{hr}$
E) None

View Answer
 Option C
 Solution:

Average speed=total distance/total time
Total time $=20 / 8+45 / 10$
Avg speed $=(20+45) /(20 / 8+45 / 10)$
$=65 /((200+360) / 80)$
$=65 * 80 / 560=65 / 7$
$=9.3 \mathrm{~km} / \mathrm{hr}$

1. Two buses start at same time from Chennai and Bangalore, which are 250 km apart. If the two buses travel towards each other, they meet after 1 hr and if they travel in same direction they meet after 5 hrs. What is the speed of the bus starts from Chennai if it is know that the one which started from Chennai has more speed than the other one?
A) $150 \mathrm{~km} / \mathrm{hr}$
B) $100 \mathrm{~km} / \mathrm{hr}$
C) $45 \mathrm{~km} / \mathrm{hr}$
D) $80 \mathrm{~km} / \mathrm{hr}$
E) $120 \mathrm{~km} / \mathrm{hr}$

View Answer
 Option A
 Solution:
 $\mathrm{S}=\mathrm{D} / \mathrm{T}$
 Here we have two speeds. We get 2 equations as.
 $250 / 1 \mathrm{hr}=\mathrm{C}+\mathrm{B}-1$ (Travelling in opposite direction, speed must be added ie C+B)
 $250 / 5 \mathrm{hr}=\mathrm{C}-\mathrm{B}-2$ (Travelling in same direction, speed to be subtracted. ie C-B)
 solving 2 eqn $\mathrm{C}=150 \mathrm{~km} / \mathrm{hr}$.

2. Car A leaves the city at 5 pmm and is driven at a speed of $30 \mathrm{~km} / \mathrm{hr}$. 3hrs later another car B leaves the city in the same direction as car A. In how much time will car B be 12 kms ahead of car A if the speed of car B is $50 \mathrm{~km} / \mathrm{hr}$?
A) 5 hrs
B) 4.2 hrs
C) 8 hrs
D) 5.1 hrs
E) 12 hrs

View Answer
Option D
Solution:
Car A travels 3 hrs . $3 * 30=90 \mathrm{~km}$
Difference between speeds $50-30=20 \mathrm{~km} / \mathrm{hr}$
Distance ahead $12 \mathrm{~km} .90+12=102 \mathrm{~km}$
$\mathrm{T}=\mathrm{D} / \mathrm{S}===>102 / 20=5.1 \mathrm{hrs}$.

3. Two train starts at the same time from Delhi and Agra and proceed towards each other at the rate of $40 \mathrm{~km} / \mathrm{hr}$ and $371 / 2 \mathrm{~km} / \mathrm{hr}$. When they meet it is found that one train has traveled 200 km more than the other train. What is the distance between Delhi and Agra?
A) 6200 km
B) 5000 km
C) 4200 km
D) 4800 km
E) 6000 km
```
View Answer
Option A
Solution:
Speed ratio 40:37 1/2==>40: 75/2==>80:75 ie 16:15
ratio diff betwwen speed is 1[16-15]
1 ===>> 200 (more distance)
[16+15]31 ===>?
31*200=6200km}\mathrm{ .
```

4. If a car runs at $45 \mathrm{~km} / \mathrm{hr}$, it reaches its destination late by 10 min but if runs at $60 \mathrm{~km} / \mathrm{hr}$ it is late by 4 min . What is the correct time for the journey?
A) 24 min
B) 14 min
C) 32 min
D) 20 min
E) 46 min

View Answer

Option B
Solution:
Distance $=$ diff in time $*(S 1 * S 2) / S 1-S 2$
$\mathrm{D}=[10-4] / 60 \mathrm{hr} *(45 * 60) /[60-45]=6 / 60 * 45 * 60 / 15==>18 \mathrm{~km}$
time $\mathrm{T}=\mathrm{D} / \mathrm{S}$ (take any one of the speed) $18 / 45=2 / 5 \mathrm{hrs}=2 / 5 * 60=24 \mathrm{~min}$
then correct time is $24-10=14$ mins.
5. A bike rider starts at $40 \mathrm{~km} / \mathrm{hr}$ and he increases his speed in every 1 hour by $2 \mathrm{~km} / \mathrm{hr}$. Then the maximum distance covered by him in 24 hrs is:
A) 682 km
B) 540 km
C) 620 km
D) 612 km
E) 500 km

View Answer

Option D

Solution:

Speed of the rider: $40 \mathrm{~km} / \mathrm{hr}$
He increases his speed in every 1 hr by $2 \mathrm{~km} / \mathrm{hr}$.
Distance covered by every 1 hr will be $40,42,44 \ldots$ upto 12 terms. i.e. (for 24 hrs)
Sum of 1 st n terms $=\mathrm{n} / 2((2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$
$12 / 2 *(2 * 40+11 * 2)==>12 / 2 *(80+22)==>612 \mathrm{~km}$
6. Two friends Ram and Ravi are travelling from point A to B, which are 600 km apart. Travelling at a certain speed Ram takes 1 hr more than Ravi to reach point B. If Ram doubles his speed he will take 1 hr 30 min less than ravi to reach point B . At what speed was Ram driving from point A to B ?
A) $150 \mathrm{~km} / \mathrm{hr}$
B) $120 \mathrm{~km} / \mathrm{hr}$
C) $80 \mathrm{~km} / \mathrm{hr}$
D) $45 \mathrm{~km} / \mathrm{hr}$
E) $92 \mathrm{~km} / \mathrm{hr}$

View Answer
Option B
Solution:
$\mathrm{T}=\mathrm{D} / \mathrm{S}$. Let x be the speed
$600 / \mathrm{x}=\mathrm{T}+1,600 / 2 \mathrm{x}=\mathrm{T}-3 / 2$
Equate T
$(600-\mathrm{x}) / \mathrm{x}=(600+3 \mathrm{x}) / 2 \mathrm{x}$
$1200-12 \mathrm{x}=600+3 \mathrm{x}==>\mathrm{x}=120 \mathrm{~km}$.
7. A man takes 4 hrs 30 min in walking to a certain place and riding back. He would have gained 2 hrs by riding both ways. The time he would take to walk both ways, is:
A) 5 hrs 10 min
B) 4 hrs 30 min
C) 7 hrs
D) 5 hrs 40 min
E) 4 hrs

View Answer
Option C
Solution:
$\mathrm{W}+\mathrm{R}=4 \mathrm{hrs} 30 \mathrm{~min}$ ie $9 / 2 \mathrm{hrs}$
$\mathrm{R}+\mathrm{R}=2 \mathrm{hrs}==>\mathrm{R}=1 \mathrm{hr}$
then $2 \mathrm{~W}=9 / 2-1=7 / 2, \mathrm{~W}=7 / 2 * 2=7 \mathrm{hrs}$
8. Two trains of equal lengths take 10 seconds and 15 seconds respectively to cross a telegraph post. If the length of each train be 300 metres, in what time will they cross each other travelling in opposite direction?
A) 25 sec
B) 18 sec
C) 14 sec
D) 12 sec
E) 20 sec

View Answer
 Option D
 Solution:

Speed of the first train $=[300 / 10] \mathrm{m} / \mathrm{sec}=30 \mathrm{~m} / \mathrm{sec}$.
Speed of the second train $=[300 / 15] \mathrm{m} / \mathrm{sec}=20 \mathrm{~m} / \mathrm{sec}$.
speed $=(30+20) \mathrm{m} / \mathrm{sec}=50 \mathrm{~m} / \mathrm{sec}$.
Required time $=(300+300) / 50 \mathrm{secc}=12 \mathrm{sec}$.
9. The driver of a car sees a school van 60 m ahead of him. After 30 seconds the school van is 60 m behind. If the speed of the car is 45 kmph , what is the speed of the School Van?
A) 31.8 kmph
B) 20.2 kmph
C) 18.6 kmph
D) 26.4 kmph
E) 30.6 kmph

View Answer
Option E
Solution:
Relative speed $=(60+60) / 30=4 \mathrm{~m} / \mathrm{s}=4 * 18 / 5=14.4 \mathrm{kmph}$
Speed of the school van $=45-14.4=30.6 \mathrm{kmph}$
10. The distance between two cities A and B is 330 km . A train starts from A at 8 AM . and travels towards B at $60 \mathrm{~km} / \mathrm{hr}$. Another train starts from B at 9 AM . and travels towards A at $75 \mathrm{~km} / \mathrm{hr}$. At what time do they meet?
A) 10 AM .
B) $10: 20 \mathrm{AM}$.
C) $11: 45 \mathrm{AM}$.
D) $11: 15 \mathrm{AM}$.
E) 11 AM

View Answer

Option E

Solution:
Distance travelled by first train in one hour
$=60 \times 1=60 \mathrm{~km}$
Therefore, distance between two train at 9 AM .
$=330-60=270 \mathrm{~km}$
Now, Relative speed of two trains $=60+75=135 \mathrm{~km} / \mathrm{hr}$
Time of meeting of two trains $=270 / 135=2 \mathrm{hrs}$.
Therefore, both the trains will meet at $9+2=11 \mathrm{AM}$.

1. A man in a train he can count 31 telephone posts in one minute. If they are known to be 45 m apart. Find the speed of the train.
A) $90 \mathrm{~km} / \mathrm{hr}$
B) $70 \mathrm{~km} / \mathrm{hr}$
C) $100 \mathrm{~km} / \mathrm{hr}$
D) $81 \mathrm{~km} / \mathrm{hr}$
E) $95 \mathrm{~km} / \mathrm{hr}$

View Answer
Option D
Solution:
speed of the train $=30 * 45=(1350 * 60) / 1000=81 \mathrm{~km} / \mathrm{hr}$
2. If a man walks from his house to office at $6 \mathrm{~km} / \mathrm{hr}$, he is late by half an hour. However, if he walks at $8 \mathrm{~km} / \mathrm{hr}$, he is late by 10 minutes only. What is the distance of his office from his house.
A) 8 km
B) 12 km
C) 14 km
D) 18 km
E) 10 km

View Answer
Option A
Solution:
$(\mathrm{x} / 6)-(\mathrm{x} / 8)=(30-10) / 60$
$\Rightarrow x=8 \mathrm{~km}$
3. A candle of 8 cm long burns at the rate of 7 cm in 7 hour and another candle of 10 cm long burns at the rate of 6 cm in 3 hour. What is the time required by each candle to remain of equal lengths after burning for some hours, when they start to burn simultaneously with uniform rate of burning?
A) 5 cm
B) 3 cm
C) 1 cm
D) 2 cm
E) 4 cm

View Answer
 Option D
 Solution:

$$
\begin{aligned}
& (8-x)=(10-2 x) \\
& \Rightarrow x=2 \mathrm{~cm}
\end{aligned}
$$

4. Two trains, 190 m and 170 m long are going in the same direction. The faster train takes one minute to pass the other completely. If they are moving in opposite directions, they pass each other completely in 3 seconds. Find the speed of each train.
A) $55 \mathrm{~m} / \mathrm{sec}$. and $42 \mathrm{~m} / \mathrm{sec}$.
B) $63 \mathrm{~m} / \mathrm{sec}$. and $57 \mathrm{~m} / \mathrm{sec}$.
C) $60 \mathrm{~m} / \mathrm{sec}$. and $55 \mathrm{~m} / \mathrm{sec}$.
D) $42 \mathrm{~m} / \mathrm{sec}$. and $40 \mathrm{~m} / \mathrm{sec}$.
E) $44 \mathrm{~m} / \mathrm{sec}$. and $40 \mathrm{~m} / \mathrm{sec}$.

View Answer

Option B

Solution:

let the speed of the faster train be x and the speed of the slower train be y. Then, When they move in the same direction, the relative speed $=(x-y)$
Total distance $=190+170=360 \mathrm{~m}$
Now, dist. $=$ speed $*$ time $=360=(x-y)^{*} 60$
$\Rightarrow(x-y)=6$ \qquad (1)

When the trains move in opposite direction $=(x+y)$
$360=(x+y) * 3$
$\Rightarrow 120=(x+y)$ (2)
On solving (1) and (2), we get
$x=63 \mathrm{~m} / \mathrm{sec}$. and $\mathrm{y}=57 \mathrm{~m} / \mathrm{sec}$.
5. A motorcyclist covered (2/3)rd of a total journey at his usual speed. He covered the remaining distance at (3/4)th of his usual speed. As a result, he arrived 30 minutes later than the time he would have taken at usual speed. If the total journey was 180 km . What was his usual speed?
A) $30 \mathrm{~km} / \mathrm{hr}$.
B) $20 \mathrm{~km} / \mathrm{hr}$.
C) $50 \mathrm{~km} / \mathrm{hr}$.
D) $40 \mathrm{~km} / \mathrm{hr}$.
E) $60 \mathrm{~km} / \mathrm{hr}$.

View Answer
 Option D

Solution:

Let the usual speed be $x \mathrm{~km} / \mathrm{hr}$.
$(1 / 3)$ rd of the journey $=180 / 3=60 \mathrm{~km}$
Therefore, $60 /(3 x / 4)-60 / x=(1 / 2)$
$\Rightarrow x=40 \mathrm{~km} / \mathrm{hr}$.
6. A boat running at the speed of $30 \mathrm{~km} / \mathrm{hr}$ downstream covers a distance of 5 km in 10 minutes . The same boat while running upstream at the same speed covers the same distance in 12 minutes .
What is the speed of the current?
A) $2.5 \mathrm{~km} / \mathrm{hr}$
B) $4 \mathrm{~km} / \mathrm{hr}$
C) $3.2 \mathrm{~km} / \mathrm{hr}$
D) $1.5 \mathrm{~km} / \mathrm{hr}$
E) $2.5 \mathrm{~km} / \mathrm{hr}$

View Answer
Option A
Solution:
$x+y=(5 * 60) / 10=30$ \qquad
and $x-y=(5 * 60) / 12=25$ - (2)From (1) and (2), we get
$x+y-x+y=30-25=5$
$\Rightarrow \mathrm{y}=2.5 \mathrm{~km} / \mathrm{hr}$.
7. Two points P and Q are separated from a distance of 200 km . A car leaves from P to Q at the same time another car leaves from Q to P . The two car meet at the end of 8 hours. If the car travelling from P to Q travels $20 \mathrm{~km} / \mathrm{hr}$. than the other. Find the speed of the faster car?
A) 15.25
B) 20.22
C) 22.5
D) 18.9
E) 21.5

View Answer
 Option C

Solution:

Let the speed of the car be $x \mathrm{~km} / \mathrm{hr}$ and $(\mathrm{x}+20) \mathrm{km} / \mathrm{hr}$.
$8 \mathrm{x}+8(\mathrm{x}+20)=200$
$\mathrm{x}=2.5$
speed of the faster carr $=22.5 \mathrm{~km} / \mathrm{hr}$.
8. A person takes 10 hours in walking to a place and riding back. He would have taken 5 hours less by riding both ways. What would be the time he would take to walk both ways?
A) 5 hours
B) 15 hours
C) 12 hours
D) 10 hours
E) 8 hours

View Answer
Option B
Solution:
Time taken in walking one way and riding other way $=10$ hours
Time taken in riding both the ways $=5$ hours
Time taken in walking one way $* 2=20$ hours -5 hours $=15$ hours
9. A man ride a bike at a speed of $6 \mathrm{~km} / \mathrm{hr}$ from point X to point Y and came back from point Y to point X at the speed of $8 \mathrm{~km} / \mathrm{hr}$. What is the ratio between the time taken by man in riding from X to Y to point Y to X respectively?
A) $3: 5$
B) $4: 3$
C) $1: 5$
D) $2: 3$
E) $2: 7$

View Answer

Option B

Solution:
Required ratio $=8: 6=4: 3$
10. Ritesh drive a car at the speed of $60 \mathrm{~km} / \mathrm{hr}$ from resort A to resort B. Returning over the same route, he got stuck in traffic and took an hour longer, also he could drive only at the speed of $40 \mathrm{~km} / \mathrm{hr}$. How many kilometers did he drive each way?
A) 122 km
B) 100 km
C) 120 km
D) 100 km
E) 110 km

View Answer
Option C
Solution:
$\mathrm{x} / 40-\mathrm{x} / 60=1$
$\Rightarrow 20 x / 2400=1$
$\Rightarrow \mathrm{x}=120 \mathrm{~km}$

1. The speed of a boat in still water is 8 kmph and the speed of current is 5 kmph . The boat starts from point P and rows to point Q and comes back to point P. It takes 16 hours during this journey .Find the distance between the P and Q .
A) 42 km
B) 28 km
C) 31 km
D) 39 km
E) 47 km

View Answer

Option D

Solution:
Between point P and $\mathrm{Q}=\mathrm{x} /(8-5)+\mathrm{x} /(8+5)=16$
$\Rightarrow \mathrm{x}=39 \mathrm{~km}$
2. To reach from point A to point B at 4pm, Anuja will have to travel at an average speed of 18 kmph . She will reach the point B at 3 pm if she travels at an average speed of 24 kmph . What will be the average speed of Anuja to reach point B at 2 pm ?
A) 55 kmph
B) 36 kmph
C) 45 kmph
D) 30 kmph
E) 28 kmph

View Answer

Option B

Solution:

From the ques. we get to know,
$\mathrm{x} / 18-\mathrm{x} / 24=1$
$\Rightarrow \mathrm{x}=72 \mathrm{~km}$
Time taken at $18 \mathrm{kmph}=72 / 18=4$ hours
Therefore,
speed to cover 72 km in 2 hours $=72 / 2=36 \mathrm{kmph}$
3. Minal and Dhiraj begin together writing out a novel containing 8190 line. Minal starts with the first line, writing at the rate of 200lines per hour, and Dhiraj starts with the last line , then writes $8189{ }^{\text {" }}$ line and so on , proceeding backward at the rate of 150 lines per hour. At what line will they meet?
A) 5000
B) 4150
C) 4680
D) 5780
E) 5600

View Answer
Option C
Solution:
Duration of time of their meet $=8190 /(200+150)=23.4 \mathrm{hr}$.
Their line of meet $=200 * 23.4=4680$ line
4. A person starts by a car from Kollam to Trivandram and at the same time another person starts from Trivandram to Kollam by a car . After passing each other they complete their journey in 2 hours and (1/2)hour resp. At what rate does the second person drives the car if the first car runs at a speed of 40 kmph ?
A) 80 kmph
B) 75 kmph
C) 90 kmph
D) 110 kmph
E) 60 kmph

View Answer Option A

Solution:

Ratio of speeds $=\sqrt{ }(1 / 2): \sqrt{ } 2$
=> S1:S2 = 1:2
If $1===40$
then, $2===80$
Therefore, $\mathrm{S} 2=80 \mathrm{kmph}$
5. Suppose the telegraph poles on a railway track are 30 m apart , how many poles will be passed by a train in 2 hours if the speed of the train is 90 km an hour ?
A) 7540
B) 8750
C) 6000
D) 5240
E) 6250

View Answer
 Option C

Solution:

Train travels the dist. $=90 * 2=180 \mathrm{~km}=180000 \mathrm{~m}$
Therefore,
the no. of poles $=180000 / 30=6000$ poles
6. The speeds of Vijaya and Keshav are 30 kmph and 40 kmph . Initially, Keshav is at a point A and Vijaya is at a place B. The distance between A and B is 650 km . Vijaya started her journey 3 hours earlier than Keshav to meet each other. If they meet each other at a place C somewhere in between A and B , then find the distance between C and B .
A) 450 km
B) 785 km
C) 527 km
D) 470 km
E) 330 km

View Answer
 Option E

Solution:

In the first 3 hours Vijaya covers 90 km , so rest dist. $=560 \mathrm{~km}$
Now, Vijaya and Keshav travels together , towards each other.
Time $=$ Dist. $/$ Speed $=560 / 70=8$ hours
Thus, Vijaya travels total $=3+8=11$ hours
Thus, the dist. traveled by Vijaya $=11 * 30=330 \mathrm{~km}$
7. A small aeroplane can travel at 400 kmph in still air . The wind is blowing at a constant speed of 40 kmph . The total time for a journey against the wind is 120 min . What will be the time in minutes for the return journey with the wind?
A) 98.18 min .
B) 220 min .
C) 114 min .
D) 80 min .
E) 194 min .

View Answer Option A

Solution:

$400-40=360 \mathrm{kmph}$
Let distance be x km
Take time in hours
$\Rightarrow 120 / 60=x / 360$
$\Rightarrow \mathrm{x}=720 \mathrm{~km}$
Speed of aeroplane with the wind $=440 \mathrm{kmph}$
Therefore ,
Time taken by aeroplane with the wind $=(720 / 440) * 60=98.18 \mathrm{~min}$.
8. There are 50 poles with a constant distance between each pole. A car takes 20 sec. to reach the $10^{\prime \prime}$ pole. How much more time will it take to reach the last pole?
A) 120.11 sec .
B) 108.88 sec .
C) 88.8 sec .
D) 125.4 sec .
E) 157.17 sec .

View Answer
 Option C

Solution:

To reach the 10th pole, the car need to travel 9 poles
9 poles 20 seconds
1 pole (20/9) seconds
To reach the last (20th) pole, the car needs to travel 19 poles.
49 pole $49 \times(20 / 9)$ seconds $=108.88 \mathrm{sec}$.
Therefore, 88.8 sec more time required to reach the last pole.
9. A bike travels without stoppages at the rate of 60 kmph and it travels with stoppages at the rate of 52 kmph . How many minutes does the bike stop?
A) 11 mins .
B) 10 mins .
C) 5 mins .
D) 8 mins .
E) 15 mins .

View Answer

Option D

Solution:

Due to stoppages, the bike can cover 8 km less per hour $60-52=8$
Time taken to cover $8 \mathrm{~km}=(8 / 60) \times 60=8$ minutes
10. A cat is 50 of its own leaps behind a rat. The cat takes 5 leaps per minute to the rat's 4 leaps. If the cat and the rat cover 8 m and 5 m per leap resp., what distance will the cat have to run before it catches the rat?
A) 800 m
B) 1100 m
C) 900 m
D) 600 m
E) 500 m

View Answer

Option A
Solution:
Speed of cat $=40 \mathrm{~m} / \mathrm{min}$.
Speed of rat $=20 \mathrm{~m} / \mathrm{min}$.
Relative speed $=40-20=20 \mathrm{~m} / \mathrm{min}$.
Diff. in dist. $=50 * 8=400 \mathrm{~m}$
Time in catching the rat $=400 / 20=20 \mathrm{~min}$.
Dist. traveled in 20min. $=20 * 40=800 \mathrm{~m}$

1. Two trains are running with speed 40 kmph and 60 kmph in the same direction. A man in the slower train passes by the faster train in 36seconds. Find the length of faster train?
A) 100 mtr
B) 150 mtr
C) 200 mtr
D) 250 mtr
E) 300 mtr

View Answer
Option C
Solution:
In the same direction speed ... 60-40 $=2 \mathrm{okmph}$
$20 * 5 / 18 * 36=200 \mathrm{mtr}$
2. After travelling two hours a train met with an accident due to this it stops for an hour. After this the train moves at $66(2 / 3) \%$ speed of its original speed and reaches to destination 3hour late. If the accident would occur at 200 km ahead in the same line then the train reaches only 2.5 hours late. Then find the distance of journey and the original speed of the train?
A) $2400 \mathrm{~km}, 600 \mathrm{kmph}$
B) $1800 \mathrm{~km}, 300 \mathrm{kmph}$
C) $2400 \mathrm{~km}, 400 \mathrm{kmph}$
D) $1800 \mathrm{~km}, 200 \mathrm{kmph}$
E) $2000 \mathrm{~km}, 100 \mathrm{kmph}$

View Answer Option B

Solution:

Due to 200 km it saves 5 hrs .
For 3 hrs it has to run $200 * 2 * 3=1200 \mathrm{~km}$
$66(2 / 3) \%=2 / 3$

$1=2($ train stops for 1 hr out 3 hrs . so $3-1=2)$
$2=4$
$1200 / 4=300 \mathrm{kmph}$
so $2 \mathrm{hr} * 300=600 \mathrm{~km}$
Now total distance $=1200+600=1800 \mathrm{~km}$
3. A man travels a distance in three equal parts. He covers first part at 20 kmph, second part at 40 kmph and third part at 120 kmph . Find the distance if he covers total distance in 20 hrs .
A) 1400 km
B) 1200 km
C) 1440 km
D) 1600 km
E) 1500 km

View Answer
Option C
Solution:
Distance $=$ average speed $*$ time
Average speed will be.... 72 kmph
$72 * 20=1440 \mathrm{~km}$
4. A person who can walk down a hill at the rate of 6 kmph and climb up the hill at rate of 4 kmph . He ascends and comes down to his starting point in 5hrs. how far did he ascends ?
A) 12 km
B) 14 km
C) 20 km
D) 24 km
E) 16 km

View Answer Option A

Solution:

First find average speed $=2 * 6 * 4 /(6+4)$
Time $=5 \mathrm{hrs}$
distance $=48 / 10 * 5=24$
one side distance $=24 / 2=12 \mathrm{~km}$
5. A student walks from his house at a speed of $2(1 / 2) \mathrm{km}$ per hour and reaches his school 6 minutes late. The next day he increases his speed by 1 kmph and reaches 6 minutes before school time.

How far is the school from his home?
A) $5 / 4 \mathrm{~km}$
B) $9 / 4 \mathrm{~km}$
C) $7 / 4 \mathrm{~km}$
D) $11 / 4 \mathrm{~km}$
E) $10 / 4 \mathrm{~km}$

> View Answer
> Option C
> Solution:
> S1*S2/difference of speed $*(($ late + early $) / 60)$
> $=(5 / 2 * 7 / 2) / 1 * 12 / 60=7 / 4 \mathrm{~km}$
6. In covering a distance of 60 km Abhi takes 2 hrs more than Sam. If Abhi triples his speed then he would take 2 hrs less than Sam. Abhi speed in kmph is ?
A) 10 kmph
B) 12 kmph
C) 15 kmph
D) 20 kmph
E) 14 kmph

View Answer

Option A

Solution:

```
. Abhi triples his speed
speed
time
                triple...............normal
    3...................... }
1........................ 3 \(3-1=2\)
2=4hrs
\(3=6 \mathrm{hrs}\)
so Abhi cover60km in 6hrs
\(60 / 6=10 \mathrm{kmph}\)
```

7. Two men start together to walk a certain distance, one at 5 kmph and another at 4 kmph . The former arrives an hour before the latter. Find the distance?
A) 10 km
B) 15 km
C) 20 km
D) 25 km
E) 30 km

View Answer Option C

Solution:

	speed	5........... 4
	time	4............. 5
		$5-4=1$
1=1		
5=5hrs		
distanc	$=4 * 5=$	

8. A man covers a distance in downstream at 18 kmph . If the speed of stream is 2 kmph then find his speed in upstream?
A) 12 kmph
B) 14 kmph
C) 16 kmph
D) 18 kmph
E) 20 kmph

View Answer
Option B
Solution:
. $18-2-2=14 \mathrm{kmph}$
9. The distance between a thief and apolicemen is 300 m . the speed of thief is $12 \mathrm{~m} / \mathrm{s}$ and the speed of police is $15 \mathrm{~m} / \mathrm{s}$. find the distance covered by police to catch the thief?
A) 1000 m
B) 1200 m
C) 1500 m
D) 2000 m
E) 1300 m

View Answer
Option C
Solution:
$300 /(15-12)=100 \mathrm{sec}$
$15 * 100=1500 \mathrm{~m}$
10. Two trains of same length passes each other in 36 sec . if the speed of trains are 40 kmph and 20kmph respectively, then find the length of train?
A) 200 m
B) 400 m
C) 600 m
D) 300 m
E) 500 m

View Answer

Option D

Solution:

$$
\begin{aligned}
& 2 \mathrm{x} /(40+20) * 18 / 5=36 \\
& 2 \mathrm{x}=600 \\
& \mathrm{x}=300 \mathrm{~m}
\end{aligned}
$$

1. A man covers a distance in 10 hrs and in three equal parts. The speed is $10 \mathrm{kmph}, 20 \mathrm{kmph}$ and 60 kmph respectively. Find the distance?
A) 240 km
B) 300 km
C) 150 km
D) 180 km

View Answer

```
Option D
Solution:
Distance = speed * time
Here we need average speed. So average speed will come 18kmph
Distance = 18*10 = 180km
```

2. Two persons covers same distance at 42 kmph and 48 kmph respectively. They find that the slower one takes 30 minutes more to cover the distance. Find the distance cover by them?
A) 150 km
B) 168 km
C) 200 km
D) 224 km

> View Answer
> Option B
> Solution:
> Speed:
> $42: 48$
> $7: 8$
> Time $8: 7$
> $\quad(+1)$
> $1=30$
> $8=240$ minutes $=4 \mathrm{hrs}$
> Distance $=$ speed $*$ time
> $=42 * 4$
> $=168 \mathrm{~km}$
3. Two persons goes from A to B at 12 kmph and 8 kmph . The faster one reach B first and come back. He meets slower one at a point R. find the distance between $A \& R$ if the distance between A to B is 20 km ?
A) 12 km
B) 24 km
C) 16 km
D) 18 km

View Answer
Option C
Solution:
it is clear that both person covers double distance .
So $2 * 20 /(12+8)=2 \mathrm{hrs}$
Slower one covers $8 * 2=16 \mathrm{~km}$
In that time in which father one covers $12 * 2=24 \mathrm{~km}$
So 16 km is ans
4. Two trains are running on a parallel track in same direction. Train A comes from behind and overtake train B in 60seconds. One person in train A observes that he covers train B in 40seconds. If the speed of trains in the ratio of 3:1, then find the ratio of length of train A \& B?
A) $1: 3$
B) $3: 2$
C) $2: 3$
D) $1: 2$

View Answer
 Option D
 Solution:

In this question speed doesn't matter because we knowlength = speed*time. Speed remains same in both cases so it will cancel out.
Now length of $A+B=60$ unints
Length of $\mathrm{B}=40$ units
Length of $A=60-40=20$ units
A: B
$20: 40$
1:2
5. If a person cover a distance in 5/7th of his normal speed, then he will reach his destination 20minutes late. Find the usual time taken by him on his normal speed?
A) 100 min
B) 50 min
C) 140 min
D) 70 min

```
View Answer
Option B
Solution:
Shortcut : multiply numerator by time/difference
Difference = 7-5 =2
Time =20
5*20/2 = 50min
```

6. A man cover a distance in t hrs, if he met with an accident after 20 km and he then run at his 3/5th of his normal speed, so he reach his destination 40 minutes late. If he met with an accident at 30 km then he reach only 30 min late. Find his original speed?
A) 60 kmph
B) 50 kmph
C) 40 kmph
D) 24 kmph

View Answer
Option C
Solution:
After moving 10km more, man saves 10 minutes. For saving of 40 minutes he has to cover 40 km .
Now speed: after accident before accident
Time
3 5 5 3
$2=40$ minutes
$1=20 \mathrm{~min}$
(Normal time) $3=60 \mathrm{~min}$
So he covers 40 km in 60 min with normal speed $=40 \mathrm{kmph}$
7. A thief steal a car at 1 pm and run at a speed of 80 kmph . The theft discovered at 2 pm and police run behind him at a speed of 100 kmph . Find at what time police will catch the theif?
A) 6 pm
B) 7 pm
C) 8 pm
D) 5 pm

View Answer

Option A

Solution:

The thief cover 80 km in 1 hr .
Time $-80 /(100-80)=4 \mathrm{hrs}$.
So $-2 \mathrm{pm}+4=6 \mathrm{pm}$
8. A boat travels upstream from Q to P and downstream from P to Q in 3 hrs. if the distance between P to Q is 4 km and the speed of the stream is 1 kmph , then what is the speed of the boat in still water?
A) 4.5 kmph
B) 5.2 kmph
C) 2.5 kmph
D) 3 kmph

View Answer
Option D
Solution:
Go with options
$4 /(3+1)+4 /(3-1)=3 \mathrm{hr}$
Only option D satisfy
9. A boat covers 12 km upstream and 18 km downstream in 3 hrs . while it covers 36 km up stream and 24 km downstream in $6(1 / 2) \mathrm{hrs}$. find velocity of the stream?
A) 1.5 kmph
B) 1 kmph
C) 2 kmph
D) 2.5 kmph

View Answer
Option C
Solution:
$12 / y+18 / x=3$ \qquad
$36 / y+24 / x=13 / 2$.
By solving above equation we will get
$\mathrm{X}=12 \mathrm{kmph}, \mathrm{y}=8 \mathrm{kmph}$
Speed of stream $=(12-8) / 2=2 \mathrm{kmph}$
10. Two person A \& B with speed of 30 kmph and 40 kmph comes towards each other. When they meet it is find that faster one cover 30km more than slower one, find the distance cover by train?
A) 210 km
B) 240 km
C) 280 km
D) 300 km

View Answer

Option A

Solution:

Faster train cover 10 km more in every hour. So for 30 km the train has to run for 3 hrs .

Distance $=(30+40) * 3$ $=210 \mathrm{~km}$

1. There are two trains. The speed of trains are x and $2 x$ respectively. Train A started at 8am and train B started at 9 AM and move towards each other. The distance between them is 600 km . they met each other at 12 Noon. Find the value of x ?
A) 120 kmph
B) 60 kmph
C) 180 kmph
D) 90 kmph
E) 45 kmph

> View Answer
> Option B
> Solution:
> $(600-x) /(x+2 x)=3$
> $10 x=600$
> $X=60$
2. A train start from point A and move towards B. it met with an accident after 45 km and covered remaining distance at $2 / 3 \mathrm{rd}$ of its speed and it late by 40 minutes. If the accident happened 15 km after then train would be 30 minutes late. Find the distance?
A) 90
B) 100
C) 105
D) 110
E) 120

View Answer
 Option C
 Solution:

It saves 10 min in 15 km
So far 40 min it cover $15^{*} 4=60 \mathrm{~km}$
So $60+45=105$
3. A man covers a distance in three equal parts. He covers first part at $5 \mathrm{kmph}, 2 \mathrm{nd}$ part at 10 kmph and 3 rd part at 30 kmph . Find his average speed?
A) 10 kmph
B) 9 kmph
C) 8 kmph
D) 15 kmph
E) 12 kmph

```
Option A
Solution:
Let X LCM of 5,10,30=30
Time taken in three parts
30/5=6hr(1)
30/10=3hr(2)
30/30=1hr(3)
Average speed = total distance/ total time
= 30+30+30/6+3+1 = 10kmph
```

4. There are two trains move towards each other @ 50kmph and 60kmph respectively. When they meet it is noted that faster train covers 50 km more than the other. Find the total distance travelled by them?
A) 555 km
B) 500 km
C) 575 km
D) 550 km
E) 525 km

View Answer
 Option D
 Solution:
 Faster train cover 10 km more in every hour so far 50 km it has to run in 5 hr .
 Distance $=(50+60) * 5=550 \mathrm{~km}$

5. Two person A \& B walk from P to Q , which are at a distance of 15 km at 6 kmph and 9 kmph respectively. B reaches Q and returns immediately and meets A at R . find the distance from P to R ?
A) 8 km
B) 12 km
C) 9 km
D) 10 km
E) 15 km
```
View Answer
Option B
Solution:
Total distance travelled by both \(=30 \mathrm{~km}\)
Ratio of speed \(=2: 3\)
\(\mathrm{PR}=2 / 2+3 * 30=12 \mathrm{~km}\)
```

6. A man walking at a speed of 5 kmph reaches his target 5 minutes late. If he walks at a speed of 6 kmph , he reaches on time. Find the distance of his target from his house?
A) 2.3 km
B) 2.4 km
C) 2.5 km
D) 2.6 km
E) 2.7 km

View Answer
 Option C
 Solution:
 $(5 * 6 / 1) *(5 / 60)=2.5 \mathrm{~km}$

7. A thief steal a car at $1: 30 \mathrm{PM}$ and drive at the speed of 80 kmph . The theft is discovered at $2: 30 \mathrm{pm}$ and police run behind him at the speed of 100 kmph . Find at what time thief will be caught?
A) $6: 30 \mathrm{PM}$
B) $5: 30 \mathrm{PM}$
C) 6 PM
D) 7 PM
E) $7: 30 \mathrm{PM}$

View Answer
Option A
Solution:
Thief cover distance in $1 \mathrm{hr}=80 \mathrm{~km}$
Time taken by police to caught him $=80 / 100-80=4 \mathrm{hrs}$
$2: 30+4=6: 30 \mathrm{pm}$
8. A train after travelling 50 km met with an accident and then proceeds at $3 / 4$ th of its former speed and arrived at destination 35 min late. Had the accident occurred 24 km further, it would have reached the destination only 15 min late. Find the normal speed of the train?
A) 36 kmph
B) 40 kmph
C) 38 kmph
D) 24 kmph
E) 12 kmph

```
View Answer
Option D
Solution:
20min = 24km
35min = 42km
Now ratio of speed - normal ..............after accident
4 .
Ratio of time - 3...................... }
    (+1)=35
So 3 = 105 min
42/105*60 =24kmph
```

9. A train passed two persons who are walking in the opposite direction in which the train is moving at the rate of 6 meter per second (mps) and 10 mps in 8 seconds and 6 seconds. Find the length of train?
A) 96 m
B) 80 m
C) 72 m
D) 54 m
E) 60 m

View Answer

Option A
Solution:
Let speed of train $=X$
Length $=(\mathrm{X}+6) * 8=(\mathrm{X}+10) * 6$
$2 \mathrm{x}=12$
$\mathrm{X}=6$
Relative speed * time $=$ length
$(6+6) * 8=96 \mathrm{~m}$
10. A train covers a platform in 30 sec and a pole in 10 sec . if the length of train is 150 m , then find the length of platform?
A) 400 m
B) 450 m
C) 500 m
D) 300 m
E) 550 m

View Answer
Option D
Solution:
Length of train : Length of platform
$(x+150) / 30=150 / 10$
$x=300$

1. Two buses starts from A and B towards each other respectively. They meet at a point X. the speed of buses are $50 \mathrm{~km} / \mathrm{hr}$ and $60 \mathrm{~km} / \mathrm{hr}$. when they met they found that faster train covers 40 km more than the slower. Find the distance between A and B.
A) 400 km
B) 420 km
C) 440 km
D) 480 km

View Answer

Option C

Solution:

The bus which is faster covers 10 km more in an hour. So for 40 km it has to take 4 hrs .
Now the time both the train travelled in 4hrs.....
Distance $=$ speed $*$ time

$$
\begin{aligned}
& (50+60)=110 \\
& 110 * 4=440
\end{aligned}
$$

2. A bus covers a total distance in 12 hours. It covers first half at $10 \mathrm{~km} / \mathrm{hr}$ and 2 nd half at $14 \mathrm{~km} / \mathrm{hr}$. find the distance covered by bus?
A) 140 km
B) 120 km
C) 160 km
D) 145 km
```
View Answer
Option A
Solution:
This is concept of average speed.
So
Distance \(=\) average speed \(*\) time
\(=2 * 10 * 14 /(10+14) * 12=140 \mathrm{~km}\).
```

3. A thief steal a car at $1: 30 \mathrm{pm}$ and drive at a speed of $60 \mathrm{~km} / \mathrm{hr}$. Police came to know about theft at $2: 30 \mathrm{pm}$ and start chasing him with the speed of $70 \mathrm{~km} / \mathrm{hr}$. after how much kilometer police will catch the thief?
A) 360 km
B) 420 km
C) 440 km
D) 480 km

View Answer
 Option B
 Solution:

Police came to know about theft after 1hou. So distance between thief and police 60 km , now police start chasing him with a relative speed of $10 \mathrm{~km} / \mathrm{h}(70-60)$
Time taken by police $=60 / 10=6 \mathrm{hrs}$
Distance run by police $=70 * 6=420 \mathrm{~km}$
4. A train passes a pole in 30 seconds and a platform in 1 minute 10 seconds. If the length of platform is 160 km . then find the length of train ?
A) 100 m
B) 80 m
C) 160 m
D) 120 m

View Answer
 Option D
 Solution:

Ratio of length of train : length of platform
$30: 40$
$40=160$
$30=120 \mathrm{~km}$
5. If a bus run without stoppages then the speed of bus is $54 \mathrm{~km} / \mathrm{h}$ and with stoppage the speed reduces to $36 \mathrm{~km} / \mathrm{hr}$. find the stoppage time in an hour of bus?
A) 20 minutes
B) 15 miniutes
C) 10 minutes
D) 25 minutes

```
View Answer
Option A
Solution:
Sol: stoppage time = original speed - stoppage speed *60
Original speed
=(54-36)/54*60
= 20 minutes
```

6. A person has to reach a place in a certain time and he find that he will be 15 minutes late, if he walks at $4 \mathrm{~km} / \mathrm{h}$ and 10 minutes earlier if he walks at $6 \mathrm{~km} / \mathrm{h}$. find the distance he has to cover?
A) 3 km
B) 4 km
C) 5 km
D) 6 km

View Answer
Option C
Solution:

$$
\begin{aligned}
& \mathrm{s} 1 * \mathrm{~s} 2 /(\mathrm{s} 2-\mathrm{s} 1) *(\mathrm{t} 1+\mathrm{t} 2) / 60 \\
& =4 * 6 / 2 * 25 / 60 \\
& =5 \mathrm{~km}
\end{aligned}
$$

7. A man can reach a certain place in 30 hours. If he reduces his speed by $1 / 15$ th, he covers 10 km less in that time. Find his speed?
A) $4 \mathrm{~km} / \mathrm{h}$
B) $5 \mathrm{~km} / \mathrm{h}$
C) $6 \mathrm{~km} / \mathrm{h}$
D) $7 \mathrm{~km} / \mathrm{h}$

View Answer
 Option B
 Solution:
 Speed $=\mathrm{A}: \mathrm{B}$

Time $=1415$ (15-1)
but we have to keep time same in B also, so distance covered in both cases $=$
$\mathrm{A}=15^{*} 14=210$
B $=14 * 14=196$
$210-196=14$
$14=10$ (10 km less in question)
$210=150 \mathrm{~km}$
Speed $=150 / 30=5 \mathrm{~km} / \mathrm{h}$
8. Ravi and Ajay start simultaneously from the same place. A far B 50km apart. Ravi's speed is $5 \mathrm{~km} / \mathrm{h}$ less than that of Ajay. Ajay after reaching B, returns and meet Ravi at a place 10km apart from B. find Ravi's speed?
A) $10 \mathrm{~km} / \mathrm{h}$
B) $15 \mathrm{~km} / \mathrm{h}$
C) $12 \mathrm{~km} / \mathrm{h}$
D) $20 \mathrm{~km} / \mathrm{h}$.

View Answer
 Option A
 Solution:

In the whole journey Ajay covers 20km more than Ravi .
Then time taken by Ajay $=20 / 5=4 \mathrm{hrs}$ (Because in every hour Ajay covers 5km more than Ravi for
20 km .)
So
Speed of Ajay $=60 / 4=15$
Ravi's speed $=15-5=10 \mathrm{~km} / \mathrm{hr}$
9. Walking at 4/5th of his usual speed, a man is 10 minutes late. The usual time taken by him to cover that distance is ?
A) 36 minutes
B) 50 minutes
C) 45 minutes
D) 40minutes

```
View Answer
Option D
Solution:
In this case \(\rightarrow\) numerator * time/(Numerator - denominator)
\(=4 * 10 / 1=40\) minutes
```

10. A man cover a certain distance in t hours. If he met with an accident at 50 km and he cover remaining distance at $2 / 3$ of his speed. He covered distance in 30 minutes late. If he met with this accident at 60 km he would late by 24 minutes, then find the distance?
A) 100 km
B) 120 km
C) 110 km
D) 150 km

View Answer
 Option A
 Solution:

He saves 6 minutes by covering 10 km more distance with his normal speed. For 30 minutes he cover 50 km and 50 km are initial
So distance $=50+50=100 \mathrm{~km}$.

1. A man covers a distance in four equal parts. He covers first part with speed of 60 kmph , second part with 80 kmph and third part and fourth part with 120 kmph and 80 kmph respectively. Find the average speed of his journey.
A) 60 kmph
B) 80 kmph
C) 120 kmph
D) 100 kmph
E) None of these

Let $\mathrm{x}=240 \mathrm{~km}$ (LCM of speed)
Time $=240 / 60+240 / 80+240 / 120+240 / 80=4+3+2+3=12$ hours
Avd speed=total distance/ total time $=240 * 4 / 12=80 \mathrm{kmph}$
2. A thief steals a car at 8 PM and starts driving at a speed of 80 kmph . The theft came into light at 9 PM and police started to chase him at 9 PM at a speed of 100 kmph . At what time will he be caught?
A) 2 AM
B) 3 AM
C) 12 PM
D) 1 AM
E) None of these

View Answer
Option D
Solution:
Thief has moved 80 Km in 1 hour, So distance $=80 \mathrm{~km}$
Time $=$ Distance $/$ relative speed $=80 /(100-80)=4$ hour
$9 \mathrm{PM}+4=1 \mathrm{AM}$
3. A train starts from P at 8 PM and reaches Q at 11 PM . Another train starts from Q at 6 PM and reaches P at 11 PM . Find at what time they will meet each other?
A) $9: 7.5 \mathrm{PM}$
B) $8: 7.5 \mathrm{PM}$
C) $10: 7.5 \mathrm{PM}$
D) $9: 7.5 \mathrm{PM}$
E) None of these

View Answer

Option A
Solution:
Time (A:B) $=3: 5=>\operatorname{Speed}(A: B)=5: 3$
Let distance $=150 \mathrm{~km}$
Speed A=50 kmph ; Speed B=30 kmph
B starts 6 PM, in 2 hours i.e (till 8 PM when A starts) it will move2*30=60 km remaining $=150-60=90 \mathrm{~km}$
Time $=$ distance/relative speed $=90 / 80=1$ hour 7 mins 30 sec
hence time=8 PM +1 hour 7 mins $30 \mathrm{sec}=9: 7.5 \mathrm{PM}$
4. If a person goes to school fro his home at a speed of 4 kmph , he reaches 10 minute late. If he goes at a speed of 6 kmph he reaches 10 mins early. Find the distance between school and home
A) 5 km
B) 8 km
C) 6 km
D) 4 km
E) None of these

```
View Answer
Option D
Solution:
Direct Formula Distance= [Speed 1*Speed 2/(S1-S2)]* [(Late + Early)//60]
=4*6/(6-4)*[(10+10)/60]=4 km
```

5. A man takes 7 hours 30 mins in walking to a certain distance and riding back. He would have gained 3 hours 10 mins by riding both ways. How long he would take to walk both ways?
A) 600 mins
B) 640 mins
C) 680 mins
D) 580 mins
E) None of these

View Answer

Option B

Solution:

7 hour $30 \mathrm{mins}-3$ hours $10 \mathrm{mins}=4$ hours 20 mins (When riding both ways)
$\Rightarrow 2$ hour 10 mins riding in one way
ride+walk= 7 hour 30 min -(i)
ride $=2$ hour $10 \mathrm{~min}-(i i)$
Diff (i)-(ii)=walk one way=5 hour 20 min
walk 2 way $=10$ hour 40 mins $=640 \mathrm{mins}$
6. In covering a distance the speed of A and B are in the ratio 4:5. A takes 40 mins more than B to reach the destination. The time taken by A to reach the destination is?
A) $2(1 / 3)$ hours
B) $4(1 / 3)$ hours
C) $3(1 / 3)$ hours
D) $5(1 / 3)$ hours
E) None of these

View Answer

Option C
Solution:
Speed (A:B)=4:5
Time (A:B)=5:4
Time diff=5-4=1
$1=40 \mathrm{~min}$
$5=200 \mathrm{mins}=3(1 / 3)$ hours
7. Two person cover some distance at a speed of 35 kmph and 40 kmph respectively. Find the distance if one person takes 15 minute more than the other.
A) 60 km
B) 50 km
C) 80 km
D) 70 km
E) None of these

```
View Answer
Option D
Solution:
Speed (A:B)=35:40=7:8
Time(A:B)=8:7 ->Diff=1
1=15
8=120 min=2 hour
Distance= 35*2=70 km
```

8. Two busses start at same time from two stations and move towards each other at the rate of 30 kmph and 35 kmph respectively. When they meet one bus has traveled 60 km more than the other. Find the distance between the two bus stations.
A) 780 km
B) 720 km
C) 680 km
D) 750 km
E) None of these

View Answer
 Option A
 Solution:

The bus with higher speed moves $35-30=5 \mathrm{~km}$ more than the other in 1 hour means it will move 60 more in $60 / 5=12$ hours
Hence distance $=30 * 12+35 * 12=780 \mathrm{~km}$
9. A train crosses a pole in 20 seconds and a platform in 45 seconds. If the length of platform is 500 meters find the sum of length of train and platform
A) 800 m
B) 900 m
C) 1000 m
D) 950 m
E) None of these

```
View Answer
Option B
Solution:
Train : Platform=20:25
\(25=500\)
\(20=400\)
total length \(=900 \mathrm{~m}\)
```

10. A train overtakes two persons who are walking in the same direction in which the train is moving, at the rate of 2 kmph and 4 kmph respectively and passes them completely in 9 seconds and 10 seconds respectively. Find the length of the train.
A) 50 m
B) 40 m
C) 60 m
D) 70 m
E) None of these
```
View Answer
Option A
Solution:
\(\mathrm{x} /(\mathrm{y}-2) * 18 / 5=10\) ——(i)
\(\mathrm{x} /(\mathrm{y}-4) * 18 / 5=9\)-(ii)
solve and get \(x=50 \mathrm{~m}\)
```

-

The distance between two towns A and B is 545 km . A train starts from town A at 8 A.M. and travels towards town B at $80 \mathrm{~km} / \mathrm{hr}$. Another train starts from town B at $9: 30 \mathrm{~A} . \mathrm{M}$. and travels towards town A at $90 \mathrm{~km} / \mathrm{hr}$. At what time will they meet each other?
A) $11: 30 \mathrm{AM}$
B) $12: 30 \mathrm{PM}$
C) $12: 00$ Noon
D) $1: 00 \mathrm{PM}$
E) 11:00 AM

View Answer

Option C

Solution:

With $80 \mathrm{~km} / \mathrm{hr}$, distance travelled in 1 n half hours (9:30AM - 8AM) is $3 / 2 * 80=120 \mathrm{Km}$
Now second train also starts, and at this time distance between both trains is $(545-120)=425 \mathrm{~km}$
Relative speed $=80+90=170 \mathrm{~km} / \mathrm{hr}$ (when travelling in opposite direction, add speed)
So time when they meet $=425 / 170=2.5 \mathrm{hrs}$
So after 9:30 AM they meet after 2.5 hrs , so 12 AM

- A bus can travel 560 km in 8 hours. The ratio of speed to train to that of car is $13: 8$. If the speed of bus is $7 / 8$ of the speed of car, find in how much time train can cover 520 km distance.
A) 3 hours
B) 4 hours
C) 6 hours
D) 5 hours
E) 2 hours

View Answer
Option B

Solution:

Speed of bus $=560 / 8=70 \mathrm{~km} / \mathrm{hr}$
So speed of car $=8 / 7 * 70=80 \mathrm{~km} / \mathrm{hr}$
So speed of train $=130 \mathrm{~km} / \mathrm{hr}$
So time taken by train to cover $520 \mathrm{~km}=520 / 130=4$ hours

- A person has to travel from point A to point B in car in a scheduled time at uniform speed. Due to some problem in car engine, the speed of car has to be decreased by $1 / 5^{\text {" }}$ of the original speed after covering 30 km . With this speed he reaches point B 45 minutes late than the scheduled time. Had the engine be malfunctioned after 48 km , he would have reached late by only 36 minutes. Find the distance between points A and B.
A) 120 km
B) 80 km
C) 100 km
D) 150 km
E) 70 km

View Answer
Option A
Solution:
Let total distance be d km , speed $=\mathrm{u}$, and time $=\mathrm{t}$ hours
So case 1:
30 km with speed $\mathrm{u},(\mathrm{d}-30)$ with speed $1-1 / 5=4 / 5$ of u
If he would have travelled $(\mathrm{d}-30)$ by speed u , then time $=(\mathrm{d}-30) / \mathrm{u}$

But now time is $=(\mathrm{d}-30) /(4 \mathrm{u} / 5)=5(\mathrm{~d}-30) / 4 \mathrm{u}$
And difference in timings is 45 minutes $=3 / 4$ hour
So $5(d-30) / 4 u-(d-30) / u=3 / 4$
Solve (d-30)/u = 3
case 2:
48 km with speed $\mathrm{u},(\mathrm{d}-48)$ with speed $1-1 / 5=4 / 5$ of u
If he would have travelled $(\mathrm{d}-48)$ by speed u, then time $=(\mathrm{d}-48) / \mathrm{u}$
But now time is $=(\mathrm{d}-48) /(4 \mathrm{u} / 5)=5(\mathrm{~d}-48) / 4 \mathrm{u}$
And difference in timings is 36 minutes $=3 / 5$ hour
So $5(\mathrm{~d}-48) / 4 \mathrm{u}-(\mathrm{d}-48) / \mathrm{u}=3 / 5$
Solve $(\mathrm{d}-48) / 4 \mathrm{u}=3 / 5$
Divide both equations, $\mathrm{d}=120 \mathrm{~km}$

- Towns A and B are 225 km apart. Two cars P and Q travel from towards each other from towns A and B respectively and meet after 3 hours. If the speed of P be $1 / 2$ of its original speed and Q be $2 / 3$ of its original speed, they would have met after 5 hours. Find the speed of the faster car.
A) $50 \mathrm{~km} / \mathrm{hr}$
B) $40 \mathrm{~km} / \mathrm{hr}$
C) $45 \mathrm{~km} / \mathrm{hr}$
D) $30 \mathrm{~km} / \mathrm{hr}$
E) $60 \mathrm{~km} / \mathrm{hr}$

View Answer

Option C

Solution:

Let speeds be $\mathrm{x} \mathrm{km} / \mathrm{hr}$ and $\mathrm{y} \mathrm{km} / \mathrm{hr}$
So $225 /(x+y)=3$
And $225 /(x / 2+2 y / 3)=5$
Solve, $x=30, y=45$

- From point A, Priya and Bhavna start cycling towards point B which is 60 km away from A. The speed of Priya is $10 \mathrm{~km} / \mathrm{hr}$ more than the speed of Bhavna. After reaching point B , Priya returns towards point A and meets Bhavna 12 km away from point B. Find the speed of Bhavna.
A) $40 \mathrm{~km} / \mathrm{hr}$
B) $15 \mathrm{~km} / \mathrm{hr}$
C) $30 \mathrm{~km} / \mathrm{hr}$
D) $20 \mathrm{~km} / \mathrm{hr}$
E) $45 \mathrm{~km} / \mathrm{hr}$

View Answer

Option D

Solution:

Speed of Bhavna $=x \mathrm{~km} / \mathrm{hr}$, of priya $=(x+10) \mathrm{km} / \mathrm{hr}$
Distance covered by Priya $=60+12=72 \mathrm{~km}$
And by Bhavna $=60-12=48 \mathrm{~km}$
So
$72 /(x+10)=48 / x$
Solve, $x=20$

- A train crosses 2 men running in the same direction at speeds $5 \mathrm{~km} / \mathrm{hr}$ and $8 \mathrm{~km} / \mathrm{hr}$ in 12 seconds and 15 seconds respectively. Find the speed of the train.
A) $30 \mathrm{~km} / \mathrm{hr}$
B) $24 \mathrm{~km} / \mathrm{hr}$
C) $25 \mathrm{~km} / \mathrm{hr}$
D) $35 \mathrm{~km} / \mathrm{hr}$
E) $20 \mathrm{~km} / \mathrm{hr}$

View Answer

Option E

Solution:

Let the speed of the train is $\mathrm{skm} / \mathrm{hr}$ and its length is a m .
So
$\mathrm{a} /[(\mathrm{s}-5) *(5 / 18)]=12$; [In same direction relative speed is obtained by subtracting. Also changing $\mathrm{km} / \mathrm{hr}$ to m / s]
Solve $3 \mathrm{a}=10 \mathrm{~s}-50$
And also
$\mathrm{a} /[(\mathrm{s}-8) *(5 / 18)]=15$;
$6 \mathrm{a}=25 \mathrm{~s}-200$
Solve (i) and (ii)
$\mathrm{s}=20 \mathrm{~km} / \mathrm{hr}$

- A train which is travelling at $80 \mathrm{~km} / \mathrm{hr}$ meets another train travelling in same direction and then leaves it 150 m behind in next 20 seconds. Find the speed of the second train.
A) $72 \mathrm{~km} / \mathrm{hr}$
B) $53 \mathrm{~km} / \mathrm{hr}$
C) $64 \mathrm{~km} / \mathrm{hr}$
D) $59 \mathrm{~km} / \mathrm{hr}$
E) $65 \mathrm{~km} / \mathrm{hr}$

View Answer

Option B

Solution:

Let speed of the 2 nd train is $\mathrm{s} \mathrm{m} / \mathrm{sec}$.
$80 \mathrm{~km} / \mathrm{hr}=(80 * 5) / 18=200 / 9 \mathrm{~m} / \mathrm{sec}$.
Trains are travelling in same direction. So
(200/9) - s = 150/20
Solve, $\mathrm{s}=265 / 18 \mathrm{~m} / \mathrm{sec}=265 / 18 * 18 / 5=53 \mathrm{~km} / \mathrm{hr}$

- In a 500 m race C can beat B by 30 m , and in a 400 m race B can beat C by 20 m . Then in 200 m race A will beat C by how much distance (in m)?
A) 58.2 m
B) 68.4 m
C) 63.5 m
D) 72.8 m
E) 55.2 m

View Answer

Option B

Solution:

When A runs 500 m , B runs 470 m
So when A runs 200 m , B runs 470/500 * 200 = 188 m
When B runs $400 \mathrm{~m}, \mathrm{C}$ runs 280 m
So when B runs $188 \mathrm{~m}, \mathrm{C}$ runs, $280 / 400 * 188=131.6 \mathrm{~m}$
So A will beat C by $(200-131.6)=68.4 \mathrm{~m}$

- 2 towns A and B are 300 km apart. 2 trains start travelling from town A towards town B such that the second train leaves 8 hours late than the first one. They both arrive at town B simultaneously. If the speed of the faster train is $10 \mathrm{~km} / \mathrm{hr}$ more than the speed of the slower train, find the time taken by the slower train to complete the journey.
A) 25 hours
B) 22 hours
C) 14 hours
D) 18 hours
E) Cannot be determined

View Answer
Option E
Solution:
Let speed of the slower train is $x \mathrm{~km} / \mathrm{hr}$, then speed of faster is $(x+10) \mathrm{kmph}$.
Let faster train takes t hours to cover the distance 300 km , then slower one takes $(t+8)$ hours.
Distance is same. So
$\mathrm{x} /(\mathrm{x}+10)=\mathrm{t} /(\mathrm{t}+8)$
Solve, $4 \mathrm{x}=5 \mathrm{t}$

- A man leaves from point A at 4 AM and reaches point B at 6 AM . Another man leaves from point B at 5 AM and reaches point A at 8 AM . Find the time when they meet.
A) $6: 20 \mathrm{AM}$
B) $6: 15 \mathrm{AM}$
C) $5: 45 \mathrm{AM}$
D) $5: 36 \mathrm{AM}$
E) $5: 30 \mathrm{AM}$

View Answer
Option D

Solution:

Use formula:
$4 \mathrm{AM}+(6-4) *(8-4) /[(6-4)+(8-5)]$
gives 4 AM + 8/5
$8 / 5$ hours $=13 / 5$ hours $=13 / 5 * 60=1$ hour 36 minutes
So $4 \mathrm{AM}+1$ hour 36 minutes $=5: 36$ AM

