Areas related to Circles Class 10 Formulas

Circumference of a circle $=2 \pi r$
Area of a circle $=\pi r^{2} \ldots$ [where r is the radius of a circle]
Area of a semi-circle $=\pi r 22$
Area of a circular path or ring:

Let ' R ' and ' r ' he radii of two circles
Then area of shaded part $=\pi R^{2}-\pi r^{2}=\pi\left(R^{2}-r^{2}\right)=\pi(R+r)(R-r)$
Minor arc and Major Arc: An arc length is called a major arc if the arc length enclosed by the two radii is greater than a semi-circle.

If the arc subtends angle ' θ ' at the centre, then the
Length of minor arc $=\theta 360 \times 2 \pi r=\theta 180 \times \pi r$
Length of major arc $=(360-\theta 360) \times 2 \pi r$

Sector of a Circle and its Area

A region of a circle is enclosed by any two radii and the arc intercepted between two radii is called the sector of a circle.
(i) A sector is called a minor sector if the minor arc of the circle is part of its boundary.
$O A B^{\wedge}$ is minor sector.

Area of minor sector $=\theta 360(\pi r 2)$
Perimeter of minor sector $=2 r+\theta 360(2 \pi r)$
(ii) A sector is called a major sector if the major arc of the circle is part of its boundary.
OACB^{\wedge} is major sector
Area of major sector $=(360-\theta 360)(\pi r 2)$
Perimeter of major sector $=2 r+(360-\theta 360)(2 \pi r)$
Minor Segment: The region enclosed by an arc and a chord is called a segment of the circle. The region enclosed by the chord PQ \& minor arc PRQ is called the minor segment.

Area of Minor segment = Area of the corresponding sector - Area of the corresponding triangle

$$
\begin{aligned}
& =\left[\frac{\theta}{360} \pi r^{2}-\frac{1}{2} r^{2} \sin \theta\right] \\
& =\frac{1}{2} r^{2}\left[\frac{\theta}{180} \pi-\sin \theta\right] \text { or } \frac{1}{2} r^{2}\left[\frac{\theta}{180} \pi-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right]
\end{aligned}
$$

Major Segment: The region enclosed by the chord PQ \& major arc PSQ is called the major segment.
Area of major segment = Area of a circle - Area of the minor segment
Area of major sector + Area of triangle
$=\pi r^{2}-\frac{\theta}{360} \pi r^{2}+\frac{1}{2} r^{2} \sin \theta=r^{2}\left[\pi-\frac{\theta}{360} \pi+\frac{\sin \theta}{2}\right]$

TABLE FOR AREA AND PERIMETER

Figures	Area	Perimeter	3
Circle	πr^{2} or $\frac{\pi d^{2}}{4}$	$2 \pi r$ or πd	r : radius d : diameter $\pi=\frac{22}{7} \text { or } 3.14$
Semicircle	$\frac{\pi r^{2}}{2}$	$\pi r+2 r$	
Quadrant	$\frac{\pi r^{2}}{4}$	$\frac{\pi r}{2}+2 r$	
Ring	$\pi(R+r)(R-r)$	$2 \pi R$ (Outer circu$m f e r e n c e)$ $2 \pi r$ (Inner circumference)	R : Radius of bigger circle r : Radius of smaller circle
Sector	(i) $\frac{\theta}{360} \times \pi r^{2}$ (ii) $\frac{1}{2} l r$	$\frac{\theta}{360} \times 2 \pi r+2 r$	r : Radius of circle l : length of arc
Segment	$\frac{\theta}{360} \pi r^{2}-\frac{1}{2} r^{2} \sin \theta$	$\frac{\pi r \theta}{180}+2 r \sin \frac{\theta}{2}$	$\boldsymbol{\theta}$: angle subtended by arc at centre

