Areas related to Circles Class 10 Formulas

Circumference of a circle = $2\pi r$

Area of a circle = πr^2 ...[where r is the radius of a circle]

Area of a semi-circle = $\pi r 22$

Area of a circular path or ring:

Let 'R' and 'r' he radii of two circles

Then area of shaded part = $\pi R^2 - \pi r^2 = \pi (R^2 - r^2) = \pi (R + r)(R - r)$

Minor arc and Major Arc: An arc length is called a major arc if the arc length enclosed by the two radii is greater than a semi-circle.

If the arc subtends angle ' θ ' at the centre, then the Length of minor arc = $\theta 360 \times 2\pi r = \theta 180 \times \pi r$ Length of major arc = $(360 - \theta 360) \times 2\pi r$

Sector of a Circle and its Area

A region of a circle is enclosed by any two radii and the arc intercepted between two radii is called the sector of a circle.

(i) A sector is called a minor sector if the minor arc of the circle is part of its boundary.

OAB[^] is minor sector.

Area of minor sector = θ 360(π r2) Perimeter of minor sector = 2r+ θ 360(2 π r)

(ii) A sector is called a major sector if the major arc of the circle is part of its boundary.

OACB[^] is major sector

Area of major sector = $(360-\theta 360)(\pi r^2)$

Perimeter of major sector = $2r+(360-\theta 360)(2\pi r)$

Minor Segment: The region enclosed by an arc and a chord is called a segment of the circle. The region enclosed by the chord PQ & minor arc PRQ is called the minor segment.

Area of Minor segment = Area of the corresponding sector – Area of the corresponding triangle

$$= \left[\frac{\theta}{360}\pi r^2 - \frac{1}{2}r^2\sin\theta\right]$$
$$= \frac{1}{2}r^2 \left[\frac{\theta}{180}\pi - \sin\theta\right] \text{ or } \frac{1}{2}r^2 \left[\frac{\theta}{180}\pi - 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}\right]$$

Major Segment: The region enclosed by the chord PQ & major arc PSQ is called the major segment. Area of major segment = Area of a circle – Area of the minor segment Area of major sector + Area of triangle

$$= \pi r^2 - \frac{\theta}{360}\pi r^2 + \frac{1}{2}r^2\sin\theta = r^2 \left[\pi - \frac{\theta}{360}\pi + \frac{\sin\theta}{2}\right]$$

Figures	Area	Perimeter	
Circle	$\pi r^2 \text{ or } \frac{\pi d^2}{4}$	2πr or πd	r : radius d : diameter $\pi = \frac{22}{7}$ or 3.14
Semicircle	$\frac{\pi r^2}{2}$	$\pi r + 2r$	
Quadrant	$\frac{\pi r^2}{4}$	$\frac{\pi r}{2} + 2r$	
Ring	$\pi(R + r) (R - r)$	$2\pi R$ (Outer circu- mference) $2\pi r$ (Inner circum- ference)	R : Radius of bigger circle r : Radius of smaller circle
Sector r 0	(i) $\frac{\theta}{360} \times \pi r^2$	$\frac{\theta}{360} \times 2\pi r + 2r$	r : Radius of circle
	(ii) $\frac{1}{2}lr$		l : length of arc
Segment Orreg	$\frac{\theta}{360}\pi r^2-\frac{1}{2}r^2\sin\theta$	$\frac{\pi r \theta}{180} + 2r \sin \frac{\theta}{2}$	θ : angle subtended by arc at centre

D ADEA AND DEDIME