SAMPLE CONTENT

MHT-RET 2021

BASED ON STD. XII SYLLABUS 2020-21

MILTIPLE CHIIILE IUESTIUNS 3882 MELIS

Differential equations are used to determine the age of dead organisms using

Target Publications Pvt. Ltd.

MHT-CET TRIUMPH Mathematics ${ }^{\text {MUUESTRE }}$ QUION:, Based on New Syllabus

Salient Features

```
E Includes chapters of Std. XII as per the latest textboc of 20< ?1.
Exhaustive subtopic wise coverage of Mr <>.
e 3882 MCQs including questions fro I various cc petitive exams.
& Chapter at a glance, Shortcuts provided each chap i.
& Includes MCQs from JEE (Main) (8 April, s..... ) ), MHT- CET (6 (6)}\mathrm{ (May, Afternoon) }201
    and JEE (Main)(7 January. \}2020
    & Also, Includes MC` from EF Nai and MHT-CET upto 2019.
    & Various competitive ex. ina. . nstions updated till the latest year.
    E Evaluation test,.JVIU ' at L. end of each chapter.
```

Scan the a rcent \downarrow code or visit www.targetpublications.org/tp1627 to download Hints ${ }^{\wedge}$ relen ${ }^{+}$questions and Evaluation Test in PDF format.

Printed at: Print to Print, Mumbai

© Target Publications Pvt. Ltd.
No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

PREFACE

"Don't follow your dreams; chase them!"- a quote by Richard Dumbrill is perhaps the most pertinent for one who is aiming to crack entrance examinations held after std. XII. We are aware of an aggressive competition a student appearing for such career defining examinations experiences and hence wanted to create books that develop the necessary knowledge, tools and skills required to excel in these examinations.
For the syllabus of MHT-CET 2020, 80% of the weightage has given to the syllabus for XII ${ }^{\text {th }}$ standard wh. only 20% is given to the syllabus for $\mathrm{XI}^{\text {th }}$ standard (with inclusion of only selected chapters). Since there is 1 u , clarity on the syllabus for MHT-CET 2021 till the time when this book was going to be printed and takin the fact into consideration that the entire syllabus for std. XII ${ }^{\text {th }}$ Science has always been an integral , art MHT-CET syllabus, this book includes all the topics of std. XII ${ }^{\text {th }}$ Mathematics.
We believe that although the syllabus for Std. XII and MHT-CET is aligned, the outlook to st . he st eect should be altered based on the nature of the examination. To score in MHT-CET, a student as to e not j. ot good with the concepts but also quick to complete the test successfully. Such in ənuity in \approx de loped through sincere learning and dedicated practice.

Having thorough knowledge of mathematical concepts, formulae and their appl ${ }^{1} \cdots$ tions . a prerequisite for beginning with MCQs on a given chapter in Mathematics. Students must kno the ruireu des, formulae, functions and general equations involved in the chapter. Mathematics require derstanc $\quad \mathbf{q}$ and application of basic concepts, so students should also be familiar with concepts studied in the rlier standards. They should befriend ideas like Mathematical logic, inverse functions, differential ρ.an in ration and its applications and random variables to tackle the problems.

As a first step to MCQ solving, students should start wi elementary estior Once a momentum is gained, complex MCQs with higher level of difficulty should e practised. Ouesunus from previous years as well as from other similar competitive exams should be solved, obtain an in ght about plausible questions.
The competitive exams challenge understanding of s. 'ents abr . subject by combining concepts from different chapters in a single question. To figure these qu out, cognitive understanding of subject is required. Therefore, students should put in extra effort to practise such questions.
Promptness being virtue in these exams, s dent ${ }^{c}$ nould wear time saving short tricks and alternate methods upon their sleeves and should be at to ap. $\mathrm{v}^{\dagger^{\prime}} \mathrm{mm} \mathrm{h}$ accuracy and precision as required.
Such a holistic preparation is the key to cce . ¿examination!
To quote Dr. A.P.J. Abdul Kalar vou ant to shine like a sun, first burn like a sun."
Our Triumph Mathematic ok has t en designed to achieve the above objectives. Commencing from basic MCQs, the book proceeds to c elop c npetence to solve complex MCQs. It offers ample practice of recent questions from vario ea netit, _aminations. While offering standard solutions in the form of concise hints, it also provid Shortcu and ernate Methods. Each chapter ends with an Evaluation test to allow selfassessment.
Features of the $\llcorner\mathrm{k}$ prese. . d on the next page will explicate more about the same!
We ho' the $\quad \mathrm{k}$ be. fits the learner as we have envisioned.
The jurn to , we a complete book is strewn with triumphs, failures and near misses. If you think we've nearly mi ed c mething or want to applaud us for our triumphs, we'd love to hear from you.
r vriu w us on: mail@targetpublications.org
A bool ffects eternity; one can never tell where its influence stops.

Best of luck to all the aspirants!

From,
Publisher
Edition: First

Chapter at a glance

1. Elementary Transformations:

Symbol	Meaning
$R_{i} \leftrightarrow R_{j}$	Interchange of $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ rows
$\mathrm{C}_{\mathrm{i}} \leftrightarrow \mathrm{C}_{\mathrm{j}}$	Interchange of $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ columns
$\mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{kR} \mathrm{R}_{\mathrm{i}}$	Multiplying the $\mathrm{i}^{\text {th }}$ row by non- zero scalar k
$\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{kC}_{i}$	Multiplying the $\mathrm{i}^{\text {th }}$ column by non-zero scalar k
$\mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{R}_{\mathrm{i}}+k \mathrm{R}_{\mathrm{j}}$	Adding k times the elements of $\mathrm{j}^{\text {th }}$ row to the corresponding elements of $\mathrm{i}^{\text {th }}$ row
$\mathrm{C}_{\mathrm{i}} \rightarrow \mathrm{C}_{\mathrm{i}}+k \mathrm{C}_{\mathrm{j}}$	Adding k times the elements of $\mathrm{j}^{\text {th }}$ column to the corresponding elements of $\mathrm{i}^{\text {th }}$ column

Chapter at a glanc

Chapter at a glance inr' a sho ind precise summary alor wit ${ }^{\downarrow}$, ar'es and Key formulae tr ch it i.
This is our at' nt to ~ 1 cools of formulae arrossiblt + a glance for the students rille lving, Jlems.

Shortcuts

Shortcuts to help students save tim. while dealing with questions.
This is our attempt to r, nlly. content that would cor handy while solving questions.

Shortcuts

$$
\int \frac{\mathrm{f}^{\prime}(x)}{\mathrm{f}(x)} \mathrm{d} x=\log |\mathrm{f}(x)|+\mathrm{c}
$$

2. $\int \frac{\mathrm{f}^{\prime}(x)}{\sqrt{\mathrm{f}(x)}} \mathrm{d} x=2 \sqrt{\mathrm{f}(x)}+\mathrm{c}$
3. $\int[\mathrm{f}(x)]^{\mathrm{n}} \mathrm{f}^{\prime}(x) \mathrm{d} x=\frac{[\mathrm{f}(x)]^{\mathrm{n}+1}}{(\mathrm{n}+1)}+\mathrm{c}, \mathrm{n} \neq-1$

Classical Thinking

Classical Thinking section encompasses straight forward questions including knowledge based questions.
This is our attempt to revise chapter in its basic form and warm up the students to deal with complex MCQs.

Critical Thinking

Critical Thinking section encompasses challenging questions which test understanding, rational thinking and application skills of the students.
This is our attempt to take the students from beginner to proficient level in smooth steps.

Critical Thinking

3.1 Trigonometric equations and th. solutions

1. The values of θ in between 0° and 360 nd satisfying the equation $\tan \theta+\frac{1}{\sqrt{3}}=0^{\circ}$ equ. $\quad o$
(A) $\theta=150^{\circ}$ and $300^{\circ}\left(\mathrm{E} \quad \Upsilon={ }^{\circ}\right.$ and $3 j^{\circ}$
(C) $\theta=60^{\circ}$ and 240° (D) $\left.\quad=15, \quad\right\lrcorner 30^{\circ}$

Competitive Thinking

2.6 Maxima and Minima

94. If $\mathrm{f}(x)=x^{3}-3 x$ has minimum value at $x \quad$ then $\mathrm{a}=$
(A) -1
(B) -3
(C) 1
(D)
[M C CF 2019]

S. nic u segregation

Every ectic is segregated sub-topic wise.
Th. is our attempt to cater to ind dualistic pace and preferences of - dying a chapter and enabling easy assimilation of questions based on the specific concept.

Subtopics

1.1 Derivative of Composite functions
1.2 Derivative of Inverse functions
1.3 Logarithmic Differentiation
1.4 Derivative of Implicit functions
1.5 Derivative of Parametric functions
1.6 Higher Order derivatives

Miscellaneous

39. The distance from the origin to the orthocentre of the triangle formed by the lines $x+y-1=0$ and $6 x^{2}-13 x y+5 y^{2}=0$ is
[AP EAMCET 2019]
(A) $\frac{11 \sqrt{2}}{2}$
(B) 13
(C) 11
(D) $\frac{11 \sqrt{2}}{24}$

Miscellaneous

Miscellaneous section incorporat MCQs whose solutions remire knowledge of concepts covf ed different sub-topics of t. same chapter or from different chapte.
This is our attempt to velo, ogrı. 'e thinking in the stl 'ent w ch is essemtial to s. que ons ir olving fusion of multip.」. vconぃ....

Evaluation test

Evaluation Test covers questions from chapter for self-evaluation purpose. This is our attempt to provide the students with a practice test a. ' help them assess their range of prepar. in of the chapter.

1.

valuation Test

$f(x)$ ir a polynomial of degree 2 , such that $\mathrm{f}(0)=3, \mathrm{f}^{\prime}(0)=-7, \mathrm{f}^{\prime \prime}(0)=8$, then $\int_{1}^{2} \mathrm{f}(x) \mathrm{d} x=$
(A) $\frac{11}{6}$
(B) $\frac{13}{6}$
(C) $\frac{17}{6}$
(D) $\frac{19}{6}$

CONTENTS

Chapter No.	Chapter Name	Page No.
Part - I		
1	Mathematical Logic	
2	Matrices	18
3	Trigonometric Functions	3.
4	Pair of Straight Lines	, 0
5	Vectors	
6	Line and Plane	106
7	Linear Programming	138
Part - II		
1	Differentiation	156
2	Applications of Derivatives	184
3	Indefinite Integration	211
4	Definite Integration	252
5	Application of Definite Integra n	275
6	Differential Equations	286
7	Probability Distrit at101.	312
8	Binomial L tribe is	323

Disclaimer

This ref ace book is transformative work based on XII ${ }^{\text {th }}$ std. textbook Mathematics; First edition: 2020 published by the Maharashtra State Bureau of 1. uk Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
© reserved with the Publisher for all the contents created by our Authors.
No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

Subtopics

1.1 Statement, Logical Connectives, Compound Statements and Truth Table
1.2 Statement Pattern, Logical Equivalence, and Algebra of Statements
1.3 Tautology, Contradiction, Contingency
1.4 Quantifiers and Quantified Statements, Duality
1.5 Negation of compound statements
1.6 Switching circuit

Aristotle (384-322 B.C.)
Aristotle the great philosopher and thinker laid the foundations of study of logic in systematic form. The study of logic helps in increasing one's abil. of systematic and logico reasoning and develops the skill understanding alidity of statements.

Chapter at a glance

1. Statement

A statement is declarative sentence which is either $i \quad$ or false, $r i$ not both simultaneously.

- Statements are denoted by lower case letters p, q,
- The truth value of a statement is denoted by ' 1 ' or ' T ' for True and ' 0 ' or ' F ' for False.

Open sentences, imperative sentenc s, ex amatory sentences and interrogative sentences are not considered as Statements in gic.
2. Logical connectives

Type of compound sate. $\boldsymbol{\eta}$ t	Connective	Symbol	Example
Conjuction	and	\wedge	p and $\mathrm{q}: \mathrm{p} \wedge \mathrm{q}$
Disjunction	or	\checkmark	p or $q: p \vee q$
Negation	not	\sim	$\begin{aligned} & \text { negation } p: \sim p \\ & \operatorname{not} p: \sim p \end{aligned}$
Conditi^1 11 or lı lication	if....then	\rightarrow or \Rightarrow	If p , then $\mathrm{q}: \mathrm{p} \rightarrow \mathrm{q}$
Bicondit, al or Do jle implication	if and only if, i.e., iff	\leftrightarrow or \Leftrightarrow	piff q : $\mathrm{p} \leftrightarrow \mathrm{q}$

i. $\mathrm{W}, \mathrm{twc} \mathrm{r}$ more simple statements are combined using logical connectives, then the statement so rm is called Compound Statement.
ii. Sub- atements are those simple statements which are used in a compound statement.
. .ue conditional statement $\mathrm{p} \rightarrow \mathrm{q}, \mathrm{p}$ is called the antecedent or hypothesis, while q is called the consequent or conclusion.
3. uth Tables for compound statements:
1.

Conjuction, Disjunction, Conditional and Biconditional:

p	q	$\mathrm{p} \wedge \mathrm{q}$	$\mathrm{p} \vee \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	$\mathrm{p} \leftrightarrow \mathrm{q}$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	F	T	T	F
F	F	F	F	T	T

ii. Negation:

p	$\sim \mathrm{p}$
T	F
F	T

4. Relation between compound statements and sets in set theory:
i. Negation corresponds to 'complement of a set'.
ii. Disjunction is related to the concept of 'union of two sets'.
iii. Conjunction corresponds to 'intersection of two sets'.
iv. Conditional implies 'subset of a set'.
v. Biconditional corresponds to 'equality of two sets'.
5. Statement Pattern:

When two or more simple statements $\mathrm{p}, \mathrm{q}, \mathrm{r} \ldots$. are combined using connectives $\wedge, \vee, \sim, \rightarrow, \leftrightarrow$ the new statement formed is called a statement pattern.
e.g.: $\sim p \wedge q, p \wedge(p \wedge q),(q \rightarrow p) \vee r$
6. Converse, Inverse, Contrapositive of a Statement:

If $p \rightarrow q$ is a conditional statement, then its
i. Converse: $\mathrm{q} \rightarrow \mathrm{p}$
ii. Inverse: $\sim p \rightarrow \sim q$
iii. Contral siti . $\sim \uparrow \rightarrow \sim p$
7. Logical equivalence:

If two statement patterns have the same truth values in their respective columns of th ioint uut table, then these two statement patterns are logically equivalent.
Consider the truth table:

p	q	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	$\mathrm{q} \rightarrow \mathrm{p}$	$\sim \mathrm{p} \rightarrow \sim \mathrm{q}$	$\sim \mathrm{q} \rightarrow \sim \sim^{\prime}$
T	T	F	F	T	T	T	T
T	F	F	T	F	T	T	l
F	T	T	F	T	F		T
F	F	T	T	T	T		T

From the given truth table, we can summarize the fo. ving:
i. The given statement and its contrapositive are $\log _{1}$, , quivalent.
i.e., $\mathrm{p} \rightarrow \mathrm{q} \equiv \sim \mathrm{q} \rightarrow \sim \mathrm{p}$
ii. The converse and inverse of the ven s.ement are logically equivalent. i.e., $q \rightarrow p \equiv \sim p \rightarrow \sim q$

8. Algebra of statements:

i. $\quad \mathrm{p} \vee \mathrm{q} \equiv \mathrm{q} \vee \mathrm{p}$

$$
\mathrm{p} \wedge \mathrm{q} \equiv \mathrm{q} \wedge \mathrm{p}
$$

Commutative property
ii. $\quad(p \vee q) \vee r=\quad(q \vee+n \quad q \vee r$
$(p \wedge q) \wedge r \equiv p \wedge(\llcorner\quad r) \equiv \wedge q \wedge r$
Associative property
iii. $\quad p \vee \wedge r) \equiv \vee q) \wedge(p \vee r)$

$$
\mathrm{n} \wedge(\mathrm{q} \quad \mathrm{r}) \equiv(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r})
$$

Distributive property
iv $\quad \sim p \quad q) \equiv \sim p \wedge \sim q$
$(p, 4) \equiv \sim p \vee \sim q$
De Morgan's laws

$$
\left.\begin{array}{rl}
\mathrm{r} \rightarrow \mathrm{q} & \equiv \sim \mathrm{p} \vee \mathrm{q} \\
\mathrm{p} \leftrightarrow & \mathrm{q}
\end{array} \boldsymbol{\equiv (\mathrm { p } \rightarrow \mathrm { q }) \wedge (\mathrm { q } \rightarrow \mathrm { p })} \begin{array}{l}
\\
\\
\equiv(\sim \mathrm{p} \vee \mathrm{q}) \wedge(\sim \mathrm{q} \vee \mathrm{p})
\end{array}\right\} \quad \text { Conditional laws }
$$

$\left.\begin{array}{ll}\text { vii. } & p \vee(p \wedge q) \equiv p \\ p \wedge(p \vee q) \equiv p\end{array}\right\} \quad$ Absorption law
viii. If T denotes the tautology and F denotes the contradiction, then for any statement ' p ':
a. $\quad \mathrm{p} \vee \mathrm{T} \equiv \mathrm{T} ; \mathrm{p} \vee \mathrm{F} \equiv \mathrm{p}$
b. $\quad \mathrm{p} \wedge \mathrm{T} \equiv \mathrm{p} ; \mathrm{p} \wedge \mathrm{F} \equiv \mathrm{F}$
\} Identity law
ix. a. $\quad p \vee \sim p \equiv T$
b. $\quad \mathrm{p} \wedge \sim \mathrm{p} \equiv \mathrm{F}$

Complement law
x. a. $\sim(\sim p) \equiv p$
b. $\quad \sim T \equiv F$
c. $\quad \sim \mathrm{F} \equiv \mathrm{T}$

Involution laws
xi. $\quad \mathrm{p} \vee \mathrm{p} \equiv \mathrm{p}$ $\mathrm{p} \wedge \mathrm{p} \equiv \mathrm{p}$

Idempotent law
9. Types of Statements:
i. If a statement is always true, then the statement is called a "tautology".
ii. If a statement is always false, then the statement is called a "contradiction" or a " Illar
iii. If a statement is neither a tautology nor a contradiction, then it is called ating cy".
10. Quantifiers and Quantified Statements:
i. The symbol ' \forall ' stands for "all values of" or "for every" and is know as ut rrsal quantifier.
ii. The symbol ' \exists ' stands for "there exists atleast one" and is known as , stential , uantifier.
iii. When a quantifier is used in an open sentence, it becomes a sta _.ut. nd is lled a quantified statement.
11. Principles of Duality:

Two compound statements are said to be dual o sach other, it . . be obtained from the other by replacing " \wedge " by " \vee " and vice versa. The connect es " \wedge " and " " are duals of each other. If ' t ' is tautology and ' c ' is contradiction, then the special statements ' \& ' c ' are d ils of each other.
12. Negation of a Statement:
i. $\quad \sim(p \vee q) \equiv \sim p \wedge \sim q$
ii. $\quad \sim(p \wedge q) \equiv \sim p \vee \sim q$
iii. $\quad \sim(p \rightarrow q) \equiv p \wedge \sim q$
iv. $\quad \sim(p \leftrightarrow q) \equiv(p \wedge \sim q) \vee(q \wedge \sim p)$
v. $\quad \sim(\sim p) \equiv p$
vi. $\quad \sim($ for all / every $x) \equiv$ for son $\quad /$ the. . .ts x
$\Rightarrow \sim(\forall x) \equiv \exists x$
vii. $\quad \sim($ for some $/$ ther \quad ist $x) \equiv \mathrm{r}$ all / every x
$\Rightarrow \sim(\exists x) \equiv$
viii. $\sim(x<y) \equiv x \geq y$
$\sim(x>y) \equiv$ - y

13. Applicatiol ${ }^{f}$ Logic . Switching Circuits:

i. A. $\cdot[\wedge]$, Switches in series)

Let $\mathfrak{f}: \Delta_{1}$ switch is ON
$1: \mathrm{S}_{2}$ switch is ON
For the lamp L to be 'ON' both S_{1} and S_{2} must be ON
Using theory of logic, the adjacent circuit can be expressed as, $\mathbf{p} \wedge \mathbf{q}$.

ii. OR : [V] (Switches in parallel)

Let $p: S_{1}$ switch is $O N$
$q: S_{2}$ switch is ON
For lamp L to be put ON either one of the two switches S_{1} and S_{2} must be ON.

Using theory of logic, the adjacent circuit can be expressed as $\mathbf{p} \vee \mathbf{q}$.

iii. If two or more switches open or close simultaneously then the switches are denoted by the same letter. If p : switch S is closed.
$\sim p$: switch S is open.
If S_{1} and S_{2} are two switches such that if S_{1} is open S_{2} is closed and vice versa.
then $\mathrm{S}_{1} \equiv \sim \mathrm{~S}_{2}$
or $\quad \mathrm{S}_{2} \equiv \sim \mathrm{~S}_{1}$

Classical Thinking

1.1 Statement, Logical Connectives, Compound Statements and Truth Table

1. Which of the following is a statement in logic?
(A) What a wonderful day!
(B) Shut up!
(C) What are you doing?
(D) Bombay is the capital of India.
2. Which of the following is a statement?
(A) Open the door.
(B) Do your homework.
(C) Switch on the fan.
(D) Two plus two is four.
3. Which of the following is a statement in logic?
(A) Go away
(B) How beautiful!
(C) $x>5$
(D) $2=3$
4. The connective in the statement "Earth revolves around the Sun and Moon is a satellite of earth", is
(A) or
(B) Earth
(C) Sun
(D) $\quad \mathrm{d}$
5. p: Sunday is a holiday, q: Ram a - no. on holiday.
The symbolic form of the tateme.
'Sunday is a holiday d Ram studies on holiday' is
(A) $\mathrm{p} \wedge \sim \mathrm{q}$
(B) $\quad \wedge q$
(C) $\sim p \wedge \sim$
(.) $p-q$
6. p : There cloua. η the sky and $\mathrm{q}:$ it is not raining. The mbolic orm is
(A) $\mathrm{p} \quad \mathrm{q}$
(B) $\mathrm{p} \rightarrow \sim \mathrm{q}$
(1) r
(D) $\sim \mathrm{p} \wedge \mathrm{q}$

It p : he s n has set, q : The moon has risen, then $\quad \mathrm{m}$ ' dically the statement 'The sun has - set or the moon has not risen' is written as
(A $\mathrm{p} \wedge \sim \mathrm{q}$
(B) $\sim q \vee p$
' $\quad \sim p \wedge q$
(D) $\sim p \vee \sim q$
8. If p : Rohit is tall, q : Rohit is handsome, then the statement 'Rohit is tall or he is short and handsome' can be written symbolically as
(A) $\mathrm{p} \vee(\sim \mathrm{p} \wedge \mathrm{q})$
(B) $\mathrm{p} \wedge(\sim \mathrm{p} \vee \mathrm{q})$
(C) $\mathrm{p} \vee(\mathrm{p} \wedge \sim \mathrm{q})$
(D) $\sim p \wedge(\sim p \wedge \sim q)$
9. Assuming the first part of the statement as p , second as q and the third as r , the _... nt 'Candidates are present, and voters or ready vote but no ballot papers' in symbolic , n is
(A) $(p \vee q) \wedge \sim r$
(B) $\quad \sim \mathrm{q})$.
(C) $(\sim p \wedge q) \wedge \sim r$
(D) $\quad(p,-1) \wedge \sim 1$
10. Write verbally $\sim p \vee$, *re
p : She is beautiful; q;, is cle
(A) She is bealut: S_{1} l but + clever
(B) She is nc veau ill or is clever
(C) She is beautil or she is not clever
(D) She is be. tiful and clever.
11. If $\mathrm{p}:{ }^{\top} \mathrm{m}$ is $\mathrm{cc}, \mathrm{q}: \quad \mathrm{m}$ fails in the examination, then e verbal $r m$ of $\sim p \vee \sim q$ is
(A) ${ }^{9} \mathrm{~m}$ is not lazy and he fails in the exa...ation.
(B) Ram is not lazy or he does not fail in the sxamination.
(C) Ram is lazy or he does not fail in the examination.
(D) Ram is not lazy and he does not fail in the examination.
12. A compound statement p or q is false only when
(A) p is false.
(B) q is false.
(C) both p and q are false.
(D) depends on p and q .
13. A compound statement p and q is true only when
(A) p is true.
(B) q is true.
(C) both p and q are true.
(D) none of p and q is true.
14. For the statements p and q ' $\mathrm{p} \rightarrow \mathrm{q}$ ' is read as 'if p then q '. Here, the statement q is called
(A) antecedent.
(B) consequent.
(C) logical connective.
(D) prime component.
15. If p : Prakash passes the exam,
q : Papa will give him a bicycle.
Then the statement 'Prakash passing the exam, implies that his papa will give him a bicycle' can be symbolically written as
(A) $\mathrm{p} \rightarrow \mathrm{q}$
(B) $\mathrm{p} \leftrightarrow \mathrm{q}$
(C) $\mathrm{p} \wedge \mathrm{q}$
(D) $\mathrm{p} \vee \mathrm{q}$
16. If d: driver is drunk, a: driver meets with an accident, translate the statement 'If the Driver is not drunk, then he cannot meet with an accident' into symbols
(A) $\sim \mathrm{a} \rightarrow \sim \mathrm{d}$
(B) $\sim \mathrm{d} \rightarrow \sim \mathrm{a}$
(C) $\sim d \wedge a$
(D) $a \wedge \sim d$
17. If a: Vijay becomes a doctor,
b : Ajay is an engineer.
Then the statement 'Vijay becomes a doctor if and only if Ajay is an engineer' can be written in symbolic form as
(A) $\mathrm{b} \leftrightarrow \sim \mathrm{a}$
(B) $\quad \mathrm{a} \leftrightarrow \mathrm{b}$
(C) \quad a \rightarrow b
(D) $\mathrm{b} \rightarrow \mathrm{a}$
18. A compound statement $\mathrm{p} \rightarrow \mathrm{q}$ is false only when
(A) p is true and q is false.
(B) p is false but q is true.
(C) atleast one of p or q is false.
(D) both p and q are false.
19. Assuming the first part of each statement as p, second as q and the third as r , the statement 'If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three distinct points, then either they are collinear or they form a triangle' in symbolic form is
(A) $p \leftrightarrow(q \vee r)$
(B) $\quad(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}$
(C) $p \rightarrow(q \vee r)$
(D) $p \rightarrow(q \wedge r)$
20. If m : Rimi likes calculus.
n : Rimi opts for engineering branch.
Then the verbal form of $m \rightarrow n$ is
(A) If Rimi opts for engineering bre -11 a she likes calculus.
(B) If Rimi likes calculus t. she 's not opt for engineering branch.
(C) If Rimi likes calcullo then s. opts for engineering branch
(D) If Rimi likes eng, ring bra sh then she opts for calculus.
21. The inverse of lo ical s. emen, $\rightarrow \mathrm{q}$ is
(A) $\sim p \rightarrow 1$
(. $p \quad q$
(C) $\mathrm{q}-$
(D) $\mathrm{q} \leftrightarrow \mathrm{p}$
22. Contranositı of $p \rightarrow y$ is
(A) q p
(B) $\quad \sim q \rightarrow p$
(1) $-\quad \mathrm{n}$
(D) $\mathrm{q} \rightarrow \sim \mathrm{p}$

The atem nt "If x^{2} is not even then x is not
-en e converse of the statement
(f. If x^{2} is odd, then x is even
(P If x is not even, then x^{2} is not even
-) If x is even, then x^{2} is even
(D) If x is odd, then x^{2} is even
24. The converse of the statement "If $x>y$, then $x+\mathrm{a}>y+\mathrm{a}$ ", is
(A) If $x<y$, then $x+\mathrm{a}<y+\mathrm{a}$
(B) If $x+\mathrm{a}>y+\mathrm{a}$, then $x>y$
(C) If $x<y$, then $x+$ a $>y+\mathrm{a}$
(D) If $x>y$, then $x+\mathrm{a}<y+\mathrm{a}$
25. The inverse of the statement "If you access the internet, then you have to pay the charges", is
(A) If you do not access the internet, then you do not have to pay the charges.
(B) If you pay the charges, then you accessed the internet.
(C) If you do not pay the charges, then yo 1 . not access the internet.
(D) You have to pay the charges if and $\sim m$ ly if you access the internet.
26. The contrapositive of the statement: © a child concentrates then he learns" is
(A) If a child does not con intra ${ }^{+}$ne doe not learn.
(B) If a child does lear, hen r does not concentrate.
(C) If a child \ldots es thc b learns.
(D) If a ch ${ }^{i}$ concen tes, he does not forget.
27. If p : Sita rets p . notion,
$\mathrm{q}:$ ıta is . चsfe. d to Pune.
The erbal for of $\sim p \leftrightarrow q$ is written as
(A) ita $g f$, promotion and Sita gets tra. .red to Pune.
(B) Jita does not get promotion then Sita will je transferred to Pune.
(C) Sita gets promotion if Sita is transferred to Pune.
(D) Sita does not get promotion if and only if Sita is transferred to Pune.
28. Negation of a statement in logic corresponds to
\qquad in set theory.
(A) empty set
(B) null set
(C) complement of a set
(D) universal set
29. The logical statement ' $\mathrm{p} \wedge \mathrm{q}$ ' can be related to the set theory's concept of
(A) union of two sets
(B) intersection of two set
(C) subset of a set
(D) equality of two sets
30. If p and q are two logical statements and A and B are two sets, then $p \rightarrow q$ corresponds to
(A) $A \subseteq B$
(B) $\mathrm{A} \cap \mathrm{B}$
(C) $A \cup B$
(D) $\mathrm{A} \Phi \mathrm{B}$

1.2 Statement Equivalence, Statements

31. Every conditional statement is equivalent to
(A) its contrapositive
(B) its inverse
(C) its converse
(D) only itself
32. The statement, 'If it is raining then I will go to college' is equivalent to
(A) If it is not raining then I will not go to college.
(B) If I do not go to college, then it is not raining.
(C) If I go to college then it is raining.
(D) Going to college depends on my mood.
33. The logically equivalent statement of $(p \wedge q) \vee(p \wedge r)$ is
(A) $\mathrm{p} \vee(\mathrm{q} \wedge \mathrm{r})$
(B) $\mathrm{q} \vee(\mathrm{p} \wedge \mathrm{r})$
(C) $\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$
(D) $\mathrm{q} \wedge(\mathrm{p} \vee \mathrm{r})$

1.3 Tautology, Contradiction, Contingency

34. When the compound statement is true for all its components then the statement is called
(A) negation statement.
(B) tautology statement.
(C) contradiction statement.
(D) contingency statement.
35. The statement $(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{p}$ is
(A) a contradiction
(B) a tautology
(C) either (A) or (B)
(D) a contingency
36. The proposition $(\mathrm{p} \wedge \mathrm{q}) \wedge(\mathrm{p} \rightarrow \sim \mathrm{q})$ is
(A) Contradiction
(B) Tautology
(C) Contingency
(D) Tautology and Contradı n
37. The proposition $(\mathrm{p} \rightarrow \sim \mathrm{p}) \wedge(\sim \mathrm{p} \rightarrow$, is a
(A) Neither tautology nc dici. ,
(B) Tautology
(C) Tautology and cont tiction
(D) Contradicti
38. The proposit $\rightarrow \sim(p, q)$ is
(A) cor ${ }^{r}$ dictio.
(B) tautology.
(C) contı ency.
(D) none of these
39. T^{1}, pro ition $\left.\rightarrow \mathrm{q}\right) \leftrightarrow(\sim \mathrm{p} \rightarrow \sim \mathrm{q})$ is a
(.) ato
(B) contradiction
(C) conti gency
(D) none of these

1. Quantifiers and Quantified Statements, Duality

4u. Using quantifiers \forall, \exists, convert the following open statement into true statement.
$' x+5=8, x \in \mathrm{~N}^{\prime}$
(A) $\forall x \in \mathrm{~N}, x+5=8$
(B) For every $x \in \mathrm{~N}, x+5>8$
(C) $\exists x \in \mathrm{~N}$, such that $x+5=8$
(D) For every $x \in \mathrm{~N}, x+5<8$
41. Using quantifier the open sentence ' $x^{2}-4=32$ '
defined on W is converted into true statement as
(A) $\forall x \in \mathrm{~W}, x^{2}-4=32$
(B) $\exists x \in \mathrm{~W}$, such that $x^{2}-4 \leq 32$
(C) $\forall x \in \mathrm{~W}, x^{2}-4>32$
(D) $\exists x \in \mathrm{~W}$, such that $x^{2}-4=32$
42. Dual of the statement $(\mathrm{p} \wedge \mathrm{q}) \vee \sim \mathrm{q} \equiv \mathrm{p} \vee \sim \mathrm{q}$ is
(A) $\quad(\mathrm{p} \vee \mathrm{q}) \vee \sim \mathrm{q} \equiv \mathrm{p} \vee \sim \mathrm{q}$
(B) $(\mathrm{p} \wedge \mathrm{q}) \wedge \sim \mathrm{q} \equiv \mathrm{p} \wedge \sim \mathrm{q}$
(C) $(p \vee q) \wedge \sim q \equiv p \wedge \sim q$
(D) $(\sim p \vee \sim q) \wedge q \equiv \sim p \wedge q$
43. The dual of the statement " ranor as the ;ob but he is not happy" is
(A) Manoj has the, 'or hi not he py.
(B) Manoj has the $\jmath \pi$ nd he. nappy.
(C) Manoj has ${ }^{{ }^{+}}$iob at. he is happy.
(D) Manoj d es n_{c} have job and he is happy.

$1.5 \mathrm{~N}^{\top}$:on compound statements

44. Whi of the t, 'owing is logically equivalent to $\sim(\mathrm{p} \wedge)$?
(A) p .
(B) $\sim p \vee \sim q$
(C) $\quad-(p \vee q)$
(D) $\sim p \wedge \sim q$
45. $\sim(p,-q)$ is equal to
(. $\quad \sim p \vee q$
(B) $\sim p \wedge q$
(C) $\sim p \vee \sim p$
(D) $\sim p \wedge \sim q$
46. The negation of the statement
"I like Mathematics and English" is
(A) I do not like Mathematics and do not like English
(B) I like Mathematics but do not like English
(C) I do not like Mathematics but like English
(D) Either I do not like Mathematics or do not like English
47. Negation of the statement: ' $\sqrt{5}$ is an integer or 5 is irrational' is
(A) $\sqrt{5}$ is not an integer or 5 is not irrational
(B) $\sqrt{5}$ is irrational or 5 is an integer
(C) $\sqrt{5}$ is an integer and 5 is irrational
(D) $\sqrt{5}$ is not an integer and 5 is not irrational
48. $\sim(\mathrm{p} \leftrightarrow q)$ is equivalent to
(A) $(\mathrm{p} \wedge \sim \mathrm{q}) \vee(\mathrm{q} \wedge \sim \mathrm{p})$
(B) $(p \vee \sim q) \wedge(q \vee \sim p)$
(C) $(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$
(D) $\quad(\mathrm{q} \rightarrow \mathrm{p}) \vee(\mathrm{p} \rightarrow \mathrm{q})$
49. The negation of 'If it is Sunday then it is a holiday' is
(A) It is a holiday but not a Sunday.
(B) No Sunday then no holiday.
(C) It is Sunday, but it is not a holiday,
(D) No holiday therefore no Sunday.
50. The negation of $q \vee \sim(p \wedge r)$ is
(A) $\sim q \wedge \sim(p \vee r)$
(B) $\sim q \wedge(p \wedge r)$
(C) $\sim q \vee(p \wedge r)$
(D) $\sim q \vee(p \wedge r)$
51. Which of the following is always true?
(A) $\quad \sim(p \rightarrow q) \equiv \sim q \rightarrow \sim p$
(B) $\sim(p \vee q) \equiv p \vee \sim q$
(C) $\sim(p \rightarrow q) \equiv p \wedge \sim q$
(D) $\quad \sim(\mathrm{p} \vee \mathrm{q}) \equiv \sim \mathrm{p} \wedge \sim \mathrm{q}$
52. The negation of 'For every natural number x, $x+5>4$ ' is
(A) $\forall x \in \mathrm{~N}, x+5<4$
(B) $\forall x \in \mathrm{~N}, x-5<4$
(C) For every integer $x, x+5<4$
(D) There exists a natural number x, for which $x+5 \leq 4$

1.6 Switching circuit

53. The switching circuit for the statement $\mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r}$ is
(A)

(B)

(C)

54. If the current fl ws th. ogh L . given circuit, then it is exr uo 'symboı. illy a.

55. . e switching circuit

in symbolic form of logic, is
(A) $\mathrm{p} \wedge \sim \mathrm{q}$
(B) $\mathrm{p} \vee \sim \mathrm{q}$
(C) $\mathrm{p} \rightarrow \sim \mathrm{q}$
(D) $p \leftrightarrow \sim q$
56. The switching circuit

in symbolic form of logic, is
(A) $\quad(\mathrm{p} \wedge \mathrm{q}) \vee(\sim \mathrm{p}) \vee(\mathrm{p} \wedge \sim \mathrm{q})$
(B) $(p \vee q) \vee(\sim p) \vee(p \wedge \sim q)$
(C) $(\mathrm{p} \wedge \mathrm{q}) \wedge(\sim \mathrm{p}) \vee(\mathrm{p} \wedge \sim \mathrm{q})$
(D) $\quad(p \vee q) \wedge(\sim p) \vee(p \wedge \sim q)^{n 1 n}$

Critical Thinkis.

1.1 Statemen Log. 1 Connectives, Compni id Sta. nents and Truth Table

1. Which of the fo. wing is an incorrect statement in log
(A) Multiply 'e numbers 3 and 10.
(B) 'times 1 is equal to 40 .
(C) $\quad 2 \quad$ he product of 3 and 10 ?
(D) 10 times 3 is equal to 30 .
?. Let : I is cloudly, q : It is still raining. The c. solic form of "Even though it is not cloudy, it is still raining" is
(A) $\sim p \wedge q$
(B) $\mathrm{p} \wedge \sim \mathrm{q}$
(C) $\sim p \wedge \sim q$
(D) $\sim p \vee q$
2. Assuming the first part of the sentence as p and the second as q , write the following statement symbolically:
'Irrespective of one being lucky or not, one should not stop working'
(A) $(\mathrm{p} \wedge \sim \mathrm{p}) \vee \mathrm{q}$
(B) $\quad(p \vee \sim p) \wedge q$
(C) $\quad(p \vee \sim p) \wedge \sim q$
(D) $(\mathrm{p} \wedge \sim \mathrm{p}) \vee \sim q$
3. If first part of the sentence is p and the second is q , then the symbolic form of the statement 'It is not true that Physics is not interesting or difficult' is
(A) $\sim(\sim p \wedge q)$
(B) $(\sim p \vee q)$
(C) $\quad(\sim p \vee \sim q)$
(D) $\sim(\sim p \vee q)$
4. The symbolic form of the statement 'It is not true that intelligent persons are neither polite nor helpful' is
(A) $\sim(\mathrm{p} \vee \mathrm{q})$
(B) $\sim(\sim p \wedge \sim q)$
(C) $\sim(\sim p \vee \sim q)$
(D) $\sim(p \wedge q)$
5. Given ' p ' and ' q ' as true and ' r ' as false, the truth values of $\sim p \wedge(q \vee \sim r)$ and $(p \rightarrow q) \wedge r$ are respectively
(A) T, F
(B) F, F
(C) T, T
(D) F, T
6. If p and q have truth value ' F ', then the truth values of $(\sim p \vee q) \leftrightarrow \sim(p \wedge q)$ and $\sim p \leftrightarrow(p \rightarrow \sim q)$ are respectively
(A) T, T
(B) F, F
(C) T, F
(D) F, T
7. If p is true and q is false then the truth values of $(p \rightarrow q) \leftrightarrow(\sim q \rightarrow \sim p)$ and $(\sim p \vee q) \wedge(\sim q \vee p)$ are respectively
(A) F, F
(B) F, T
(C) T, F
(D) T, T
8. Let a: $\sim(\mathrm{p} \wedge \sim \mathrm{r}) \vee(\sim \mathrm{q} \vee \mathrm{s})$ and

$$
\mathrm{b}:(\mathrm{p} \vee \mathrm{~s}) \leftrightarrow(\mathrm{q} \wedge \mathrm{r})
$$

If the truth values of p and q are true and that of r and s are false, then the truth values of a and b are respectively.
(A) F, F
(B) T, T
(C) T, F
(D) F, T
10. If p is false and q is true, then
(A) $\mathrm{p} \wedge \mathrm{q}$ is true
(B) $\mathrm{p} \vee \sim \mathrm{q}$ is true
(C) $\mathrm{q} \rightarrow \mathrm{p}$ is true
(D) $\mathrm{p} \rightarrow \mathrm{q}$ is true
11. Given that p is 'false' and q is 'true' then the statement which is 'false' is
(A) $\sim p \rightarrow \sim q$
(B) $\mathrm{p} \rightarrow(\mathrm{q} \wedge \mathrm{p})$
(C) $\mathrm{p} \rightarrow \sim \mathrm{q}$
(D) $\mathrm{q} \rightarrow \sim \mathrm{p}$
12. If p, q are true and r is false statement then which of the following is true statement?
(A) $(\mathrm{p} \wedge \mathrm{q}) \vee \mathrm{r}$ is F
(B) $\quad(p \wedge q) \rightarrow r$ is T
(C) $(p \vee q) \wedge(p \vee r)$ is T
(D) $\quad(\mathrm{p} \rightarrow \mathrm{q}) \leftrightarrow(\mathrm{p} \rightarrow \mathrm{r})$ is T
13. If the truth value of statement $p \quad(\sim q \quad a)$. false (F), then the truth valי $-f$ the rements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are respectively.
(A) $\mathrm{T}, \mathrm{F}, \mathrm{T}$
3) $\mathrm{F}, \mathrm{D} \mathrm{T}$
(C) T, T, F
(L T, ' F
14. If $p \rightarrow(p \wedge \sim q)$, falsc hen t . truth values of p and q are $\mathrm{r} \quad$ ively.
(A) F, F
(B) T, F
(C) T, I
(D) F, T
15. If $\boldsymbol{1}^{\vee}$ is F , hen which of the following is c rect ${ }^{\circ}$
(+) $\quad \therefore \leftrightarrow \quad$ ı T
(B) $\mathrm{p} \rightarrow \mathrm{q}$ is T
(C) $r-\rho$ is T
(D) $\mathrm{p} \rightarrow \mathrm{q}$ is F
I. contrapositive of $(p \vee q) \rightarrow r$ is
($\mathcal{A} \quad \sim \mathrm{r} \rightarrow \sim \mathrm{p} \wedge \sim \mathrm{q}$
(B) $\sim \mathrm{r} \rightarrow(\mathrm{p} \vee \mathrm{q})$
-) $\mathrm{r} \rightarrow(\mathrm{p} \vee \mathrm{q})$
(D) $\quad \mathrm{p} \rightarrow(\mathrm{q} \vee \mathrm{r})$
17. The converse of 'If x is zero then we cannot divide by x^{\prime} is
(A) If we cannot divide by x then x is zero.
(B) If we divide by x then x is non-zero.
(C) If x is non-zero then we can divide by x.
(D) If we cannot divide by x then x is non-zero.

1.2 Statement Pattern, Logical Equivalence, and Algebra of Statements

18. Find out which of the following statements have the same meaning:
i. If Seema solves a problem then she is happy.
ii. If Seema does not solve a problem tr she is not happy.
iii. If Seema is not happy then s solved the problem.
iv. If Seema is happy then she has ${ }^{1}$ ved the problem
(A) (i, ii) and (iii, iv)
(B) i, ii, iii
(C) (i, iii) and (ii, iv
(D) ii, iii, iv
19. Find which of ae for ving sutements convey the same mea gs?
i. If it ic the te's dress then it has to be red.
ii. $\quad f$ it is it bi \because 's dress then it cannot be red.
iii. ${ }^{\text {it }}$ is red dress then it must be the bi. aress.
iv. 'f it is not a red dress then it can't be the ride's dress.
(A) (i, iv) and (ii, iii)
(D) (i, ii) and (iii, iv)
(C) (i), (ii), (iii)
(D) (i, iii) and (ii, iv)
20. $p \wedge(p \rightarrow q)$ is logically equivalent to
(A) $p \vee q$
(B) $\sim p \vee q$
(C) $p \wedge q$
(D) $p \vee \sim q$
21. Which of the following is true?
(A) $\mathrm{p} \wedge \sim \mathrm{p} \equiv \mathrm{T}$
(B) $\mathrm{p} \vee \sim \mathrm{p} \equiv \mathrm{F}$
(C) $\mathrm{p} \rightarrow \mathrm{q} \equiv \mathrm{q} \rightarrow \mathrm{p}$
(D) $\mathrm{p} \rightarrow \mathrm{q} \equiv(\sim \mathrm{q}) \rightarrow(\sim \mathrm{p})$
22. Which of the following is NOT equivalent to $\mathrm{p} \rightarrow \mathrm{q}$.
(A) p is sufficient for q
(B) p only if q
(C) q is necessary for p
(D) q only if p
23. The statement pattern $(\mathrm{p} \wedge \mathrm{q}) \wedge[\sim \mathrm{r} \vee(\mathrm{p} \wedge \mathrm{q})]$ $\vee(\sim p \wedge q)$ is equivalent to
(A) $\mathrm{p} \wedge \mathrm{q}$
(B) r
(C) p
(D) q
24. The logical statement $(p \rightarrow q) \wedge(q \rightarrow \sim p)$ is equivalent to:
(A) p
(B) $\sim q$
(C) q
(D) $\sim p$

1.3 Tautology, Contradiction, Contingency

25. $\quad \sim(\sim p) \leftrightarrow p$ is
(A) a tautology
(B) a contradiction
(C) neither a contradiction nor a tautology
(D) none of these
26. Which of the following statement pattern is a tautology?
(A) $\quad(\mathrm{p} \rightarrow \mathrm{q}) \vee \mathrm{q}$
(B) $\mathrm{p} \vee(\mathrm{q} \rightarrow \mathrm{p})$
(B) $\mathrm{p} \rightarrow(\mathrm{q} \vee \mathrm{p})$
(D) $\quad(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{p}$
27. Which one of the following statements is not a tautology?
(A) $\mathrm{p} \rightarrow(\mathrm{p} \vee \mathrm{q})$
(B) $\quad(p \wedge q) \rightarrow(\sim p \vee q)$
(C) $\quad(\mathrm{p} \wedge q) \rightarrow p$
(D) $\quad(p \vee q) \rightarrow(p \vee \sim q)$
28. Which one of the following is a tautology?
(A) $\mathrm{p} \vee(\mathrm{p} \wedge \mathrm{q})$
(B) $\quad \mathrm{q} \rightarrow(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q}))$
(C) $\quad(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q})) \rightarrow \mathrm{q}$
(D) $\mathrm{p} \wedge(\mathrm{p} \vee \mathrm{q}))$
29. Which of the following statements is a tautology?
(A) $\quad \sim(p \vee \sim q) \rightarrow(p \vee q)$
(B) $\quad(\sim p \vee \sim q) \rightarrow(p \wedge q)$
(C) $p \vee(\sim q) \rightarrow(p \wedge q)$
(D) $\quad \sim(p \vee \sim q) \rightarrow(p \vee q)$
30. Which of the following is a tautol c_{2} ?
(A) $\mathrm{p} \rightarrow(\mathrm{p} \wedge \mathrm{q})$
(B) $\mathrm{q} \wedge(\mathrm{p} \rightarrow \mathrm{q})$
(C) $\quad \sim(p \rightarrow q) \leftrightarrow p \wedge \sim q_{1}$
(D) $\quad(p \wedge q) \leftrightarrow$
31. $\left.(\sim p \wedge \sim q) /{ }^{\boldsymbol{q}} \quad{ }^{\sim}\right)$ is a
(A) tau ${ }^{+}$, gy
(B) contı ${ }^{\text {ncy }}$
(C) - tradı $\mathfrak{\sim}$
(') r L. - tautology nor contradiction
Whir of th following statement is contradiction?

$$
\mathrm{q}) \rightarrow \mathrm{q}
$$

(B $\quad(\mathrm{p} \wedge \sim q) \wedge(\mathrm{p} \rightarrow \mathrm{q})$
(r) $p \rightarrow \sim(p \wedge \sim q)$
(D) $(p \wedge q) \vee \sim q$
33. Which of the following statement is a contingency?
(A) $(p \wedge \sim q) \vee \sim(p \wedge \sim q)$
(B) $\quad(\mathrm{p} \wedge \mathrm{q}) \leftrightarrow(\sim \mathrm{p} \rightarrow \sim \mathrm{q})$
(C) $\quad(\sim q \wedge p) \vee(p \vee \sim p)$
(D) $\quad(\mathrm{q} \rightarrow \mathrm{p}) \vee(\sim \mathrm{p} \leftrightarrow q)$

1.4 Quantifiers and Quantified Statements Duality

34. If $\mathrm{A} \equiv\{4,5,7,9\}$, determine which of the following quantified statement is true.
(A) $\exists x \in \mathrm{~A}$, such that $x+4=7$
(B) $\forall x \in \mathrm{~A}, x+1 \leq 10$
(C) $\forall x \in \mathrm{~A}, 2 x \leq 17$
(D) $\exists x \in \mathrm{~A}$, such that $x+1>10$
35. Using quantifier the open sentence $x^{2}>$ defined on N is converted into true sta. ent as
(A) $\forall x \in \mathrm{~N}, x^{2}>0$
(B) $\forall x \in \mathrm{~N}, x^{2}=0$
(C) $\exists x \in \mathrm{~N}$, such hat $x^{2}<$
(D) $\exists x \notin \mathrm{~N}$, such tı $x^{2}<\mathrm{l}$
36. Which of the following 4 ntified statement is false?
(A) $\exists x \in \mathrm{I} \quad$ uch that $+5 \leq 6$
(B) $\forall x \in \mathrm{~N}, \ldots \quad \nless 0$
(C) $\quad x \in$ sucı ' at $x-1<0$
(D) $\exists x \in \mathrm{~N}, \quad$ ch that $x^{2}-3 x+2=0$
37. Giver 'elow ie four statements along with their resp....ve duals. Which dual statement is not c rect?
(A) $\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{r} \vee \mathrm{s}),(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{r} \wedge \mathrm{s})$
(P $^{\prime} \quad(p \vee \sim q) \wedge(\sim p),(p \wedge \sim q) \vee(\sim p)$
(C) $(p \wedge q) \vee r,(p \vee q) \wedge r$
(D) $(p \vee q) \vee s,(p \wedge q) \vee s$
38. The dual of ' $(p \wedge t) \vee(c \wedge \sim q)$ ' where t is a tautology and c is a contradiction, is
(A) $(p \vee c) \wedge(t \vee \sim q)$
(B) $(\sim p \wedge c) \wedge(t \vee q)$
(C) $(\sim \mathrm{p} \vee \mathrm{c}) \wedge(\mathrm{t} \vee \mathrm{q})$
(D) $(\sim \mathrm{p} \vee \mathrm{t}) \wedge(\mathrm{c} \vee \sim \mathrm{q})$

1.5 Negation of compound statements

39. Negation of the proposition $(\mathrm{p} \vee \mathrm{q}) \wedge(\sim \mathrm{q} \wedge \mathrm{r})$ is
(A) $(p \wedge q) \vee(q \vee \sim r)$
(B) $(\sim p \vee \sim q) \wedge(\sim q \wedge r)$
(C) $(\sim p \wedge \sim q) \vee(q \vee \sim r)$
(D) $\quad(\mathrm{p} \wedge q) \wedge(q \wedge \sim \mathrm{r})$
40. The negation of $\mathrm{p} \vee(\sim \mathrm{q} \wedge \sim \mathrm{p})$ is
(A) $\sim p \wedge q$
(B) $\mathrm{p} \vee \sim \mathrm{q}$
(C) $\sim p \wedge \sim q$
(D) $\sim p \vee \sim q$
41. The negation of the Boolean expression $\sim s \vee(\sim r \wedge s)$ is equivalent to:
(A) $\sim s \wedge \sim r$
(B) r
(C) $\mathrm{s} \wedge \mathrm{r}$
(D) $\mathrm{s} \vee \mathrm{r}$
42. The Boolean expression $\sim(p \Rightarrow \sim q)$ is equivalent to:
(A) $\mathrm{p} \wedge \mathrm{q}$
(B) $\quad(\sim p) \Rightarrow q$
(C) $\mathrm{q} \Rightarrow \sim \mathrm{p}$
(D) $\mathrm{p} \vee \mathrm{q}$
43. For any two statements p and q , the negation of the expression $p \vee(\sim p \wedge q)$ is:
(A) $\sim p \vee \sim q$
(B) $\mathrm{p} \leftrightarrow \mathrm{q}$
(C) $\mathrm{p} \wedge \mathrm{q}$
(D) $\sim p \wedge \sim q$
44. Which of the following is logically equivalent to $\sim[p \rightarrow(p \vee \sim q)]$?
(A) $p \vee(\sim p \wedge q)$
(B) $\mathrm{p} \wedge(\sim \mathrm{p} \wedge \mathrm{q})$
(C) $p \wedge(p \vee \sim q)$
(D) $\mathrm{p} \vee(\mathrm{p} \wedge \sim \mathrm{q})$
45. The logical statement
$[\sim(\sim p \vee q) \vee(p \wedge r)] \wedge(\sim q \wedge r)$ is equivalent to:
(A) $(\sim p \wedge \sim q) \wedge r$
(B) $(\mathrm{p} \wedge \sim \mathrm{q}) \vee \mathrm{r}$
(C) $\sim p \vee r$
(D) $\quad(\mathrm{p} \wedge \mathrm{r}) \wedge \sim \mathrm{q}$
46. $\mathrm{p} \leftrightarrow \mathrm{q}$ is logically NOT equivalent to
(A) $(\sim p \vee q) \wedge(\sim q \vee p)$
(B) $(\mathrm{p} \wedge \mathrm{q}) \vee(\sim \mathrm{p} \wedge \sim \mathrm{q})$
(C) $(p \wedge \sim q) \vee(q \wedge \sim p)$
(D) $(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$
47. The negation of the statement "If Saral Mart does not reduce the prices, I will not shop there any more" is
(A) Saral Mart reduces the prices and still I will shop there.
(B) Saral Mart reduces the prices and I will not shop there.
(C) Saral Mart does not reduce the prices and still I will shop there.
(D) Saral Mart does not red ice the ices \quad I will shop there.
48. The negation of the statement, $\exists \Omega=\mathrm{R}$, wan that $x^{2}+3>0$, is
(A) $\exists x \in \mathrm{R}$, such tha $+3<0$
(B) $\quad \forall x \in \mathrm{R}, x^{2}+3>0$
(C) $\forall x \in \mathrm{R}, x^{2}\ulcorner 3-\urcorner$
(D) $\exists x \in \mathrm{P} \quad$ that $\lambda\llcorner 3=$

1.6 Swì ing cirt '

49. Tl s s ching circuit for the statement $\mid \wedge(r \vee 1, \quad(\sim p \vee s)$ is
(A)

(B)

(C)

(D)

50. If the sy lic f. 1 is $(\mathrm{p} \wedge \mathrm{r}) \vee(\sim \mathrm{q} \wedge \sim \wedge,(\sim \mathrm{p} \quad \sim \mathrm{r})$ then switching circuit is
(A)

(B)

(C)

(D)

51. The switching circuit for the symbolic form $(p \vee q) \wedge[\sim p \vee(r \wedge \sim q)]$ is

(B)

(C)

(D)

52. The symbolic form of logic for the following circuit is

(A) $(p \vee q) \wedge(\sim p \wedge r \vee \sim q) \vee \sim r$
(B) $(\mathrm{p} \wedge \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{r} \wedge \sim \mathrm{q}) \vee \sim \mathrm{r}$
(C) $(p \wedge q) \vee[\sim p \wedge(r \vee \sim q)] \vee \sim r$
(D) $(\mathrm{p} \vee \mathrm{q}) \wedge[\sim \mathrm{p} \vee(\mathrm{r} \wedge \sim \mathrm{q})] \vee \sim \mathrm{r}$
53. The simplified circuit for the ffllowin: circr, is
(A)

(B)

(C)

ne simplified circuit for the following circuit is

(A)

(B)

(C)

(D)

Competitive Thinking

1.1 Statement, Logical C' aec es, Compound Statements and T h Table

1. Which of the following sta ${ }^{-n t}$ is ot a statement in logic?
(MH ET 2, 5]
(A) Earth is a plar t .
(B) Plants are livin ${ }_{5}$.ject.
(C) $\sqrt{-9}$ is a rational L nber.
(D) I am lyin
2. Which of follow. r is not a correct statement?
[Karnataka CET 2014]
(A) ratin atics interesting.
(B) $\sqrt{3}$ is a_{1} ime.
(C) 5 is ir tional.
(D) Thu oull is a star.
3. If p : ahul is physically disable. q : Rahul stood first $\quad 1$ the class, then the statement "In spite of y sical disability Rahul stood first in the class in symbolic form is
[MHT CET 2019]
(A) $\mathrm{p} \wedge \mathrm{q}$
(B) $\mathrm{p} \vee \mathrm{q}$
(C) $\sim p \vee q$
(D) $\mathrm{p} \rightarrow \mathrm{q}$
4. $\mathrm{p}: \mathrm{A}$ man is happy
q : The man is rich.
The symbolic representation of "If a man is not rich then he is not happy" is
[MH CET 2004]
(A) $\sim \mathrm{p} \rightarrow \sim \mathrm{q}$
(B) $\sim q \rightarrow \sim p$
(C) $\mathrm{p} \rightarrow \mathrm{q}$
(D) $\mathrm{p} \rightarrow \sim \mathrm{q}$
5. $\mathrm{p}:$ Ram is rich
q : Ram is successful
r: Ram is talented
Write the symbolic form of the given statement.
Ram is neither rich nor successful and he is not talented
[MH CET 2008]
(A) $\sim p \wedge \sim q \vee \sim r$
(B) $\sim p \vee \sim q \wedge \sim r$
(C) $\sim p \vee \sim q \vee \sim r$
(D) $\sim p \wedge \sim q \wedge \sim r$
6. Let p be the proposition : Mathematics is interesting and let q be the proposition : Mathematics is difficult, then the symbol $\mathrm{p} \wedge \mathrm{q}$ means
[Karnataka CET 2001]
(A) Mathematics is interesting implies that Mathematics is difficult.
(B) Mathematics is interesting implies and is implied by Mathematics is difficult.
(C) Mathematics is interesting and Mathematics is difficult.
(D) Mathematics is interesting or Mathematics is difficult.
7. Let p : roses are red and q : the sun is a star. Then the verbal translation of $(\sim p) \vee q$ is
[Kerala (Engg.) 2011]
(A) Roses are not red and the sun is not a star.
(B) It is not true that roses are red or the sun is not a star.
(C) It is not true that roses are red and the sun is not a star.
(D) Roses are not red or the sun is a star.
8. Let p : Boys are playing
q : Boys are happy
the equivalent form of compound statement $\sim p \vee \mathrm{q}$ is
[MH CET 2013]
(A) Boys are not playing or they are happy.
(B) Boys are not happy or they are playing.
(C) Boys are playing or they are not happy.
(D) Boys are not playing or they are not happy.
9. If p and q are true statements in logic, which of the following statement pattern is true?
[MH CET 2007]
(A) $(\mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{q}$
(B) $\quad(\mathrm{p} \vee \mathrm{q}) \rightarrow \sim \mathrm{q}$
(C) $\quad(p \wedge \sim q) \rightarrow q$
(D) $\quad(\sim p \wedge q) \wedge q$
10. If truth values of $\mathrm{p}, \mathrm{p} \leftrightarrow \mathrm{r}, \mathrm{p} \leftrightarrow \mathrm{q}$ are $\mathrm{F} . \mathrm{T}, \mathrm{F}$ respectively, then respective truth va ${ }^{1}$ os $\mathrm{o}_{.}$. and r are

$$
\left[\begin{array}{ll}
1 & \text { TT C }
\end{array} \frac{\angle 019}{}\right]
$$

(A) F, T
(B) T ,
(C) F, F
($\mathrm{D}^{\text {, }} \boldsymbol{T} \mathrm{F}$
11. If $p \rightarrow(\sim p \vee q)$ is false, ${ }^{1}$, truth v_{c} ies of p and q are respectively
(A) F, T
(C) T, T
マ) $\quad \mathrm{F}$
(C) T, T
(L) T,

Karı CET 2002]
12. If $(\mathrm{p} \wedge \sim \mathrm{q}) \quad(\sim \mathrm{p} \vee$. is a false statement, then resr etrut alues of p, q and r are
[MH CET 2010]
If ($p \sim \sim r \rightarrow(\sim p \vee q)$ is false, then the truth ${ }^{\text {'ues }} \ldots \rho, q$ and r are respectively
[Assam CEE 2018]
($\quad \mathrm{T}, \mathrm{F}, \mathrm{F}$
(B) $\mathrm{F}, \mathrm{T}, \mathrm{T}$
C) $\mathrm{T}, \mathrm{T}, \mathrm{T}$
(D) F, F, F
13. If p : Every square is a rectangle
$\mathrm{q}:$ Every rhombus is a kite then truth values of $\mathrm{p} \rightarrow \mathrm{q}$ and $\mathrm{p} \leftrightarrow \mathrm{q}$ are \qquad and respectively.
[MH CET 2016]
(A) F, F
(B) T, F
(C) F, T
(D) T, T
14. The converse of the contrapositive of $p \rightarrow q$ is
[Karnataka CET 2005]
(A) $\sim p \rightarrow q$
(B) $\mathrm{p} \rightarrow \sim \mathrm{q}$
(C) $\sim p \rightarrow \sim q$
(D) $\quad \sim q \rightarrow p$
15. If Ram secures 100 marks in maths, then he will get a mobile. The converse is
[Orissa JEE 2C .
(A) If Ram gets a mobile, then he ${ }^{x}: 11$ not secure 100 marks in maths.
(B) If Ram does not get a mobile, $\quad n$ he wir. secure 100 marks in maths
(C) If Ram will get a mob , the he si res 100 marks in maths.
(D) None of these
16. Let p : A triangle is equi ral, $\mathrm{q}:$ A triangle is equiangular, the rirr e of $4 \quad$ is
[MH CET 2013]
(A) If a $\operatorname{trian}_{\varepsilon}$ is not eyuilateral then it is not fum 'ular.
(B) If a triat e is not equiangular then it is not 'quilater:
(C) 1. ${ }^{+r}$: gle is equiangular then it is not equilateral.
(D) f a triangle is equiangular then it is equilateral.
17. It it is raining, then I will not come. The contrapositive of this statement will be
[Orissa JEE 2011]
(A) If I will come, then it is not raining
(B) If I will not come, then it is raining
(C) If I will not come, then it is not raining
(D) If I will come, then it is raining
18. The contrapositive statement of the statement "If x is prime number, then x is odd" is
[Karnataka CET 2017]
(A) If x is not a prime number, then x is not odd.
(B) If x is a prime number, then x is not odd.
(C) If x is not a prime number, then x is odd.
(D) If x is not odd, then x is not a prime number.
19. The contrapositive of the statement: "If the weather is fine then my friends will come and we go for a picnic." is
[MHT CET 2018]
(A) The weather is fine but my friends will not come or we do not go for a picnic.
(B) If my friends do not come or we do not go for a picnic then weather will not be fine.
(C) If the weather is not fine then my friends will not come or we do not go for a picnic.
(D) The weather is not fine but my friends will come and we go for a picnic.
20. The contrapositive of the statement "If you are born in India, then you are a citizen of India", is
[JEE (Main) 2019]
(A) If you are a citizen of India, then you are born in India.
(B) If you are born in India, then you are not a citizen of India.
(C) If you are not a citizen of India, then you are not born in India.
(D) If you are not born in India, then you are not a citizen of India.

1.2 Statement Pattern, Logical Equivalence,

 and Algebra of Statements21. The logically equivalent statement of $p \leftrightarrow q$ is
[Karnataka CET 2000]
(A) $(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{q} \rightarrow \mathrm{p})$
(B) $\quad(\mathrm{p} \wedge q) \rightarrow(\mathrm{p} \vee \mathrm{q})$
(C) $\quad(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$
(D) $(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{q})$
22. The statement $p \rightarrow(\sim q)$ is equivalent to
[Kerala (Engg.) 2011]
(A) $\mathrm{q} \rightarrow \mathrm{p}$
(B) $\sim q \vee \sim p$
(C) $\mathrm{p} \wedge \sim \mathrm{q}$
(D) $\sim q \rightarrow p$
23. $\sim \mathrm{p} \wedge \mathrm{q}$ is logically equivalent to
[Karnataka CET 2004]
(A) $\mathrm{p} \rightarrow \mathrm{q}$
(B) $\mathrm{q} \rightarrow \mathrm{p}$
(C) $\sim(p \rightarrow q)$
(D) $\quad \sim(\mathrm{q} \rightarrow r$
24. The statement pattern $(\sim \mathrm{p}, \mathrm{q})$ is lo. ally equivalent to
[MH. SET 17]
(A) $\quad(p \vee q) \vee \sim p$
(B) $\quad(p \vee \wedge \wedge \sim p$
(C) $\quad(\mathrm{p} \wedge q) \rightarrow p$
(,$~($ ' $q) ~ p$
25. $(p \wedge q) \vee(\sim q \wedge p) \equiv$
[MH (IT 2009]
(A) $q \vee p$
(b,
(C) $\sim q$
'D) $\quad \wedge q$
26. The Boolear Expr ion $(p \wedge \sim q) \vee q \vee(\sim p \wedge q)$ is equivalent
[JEE (Main) 2016]
(A) $\wedge q$
(B) $\mathrm{p} \vee \mathrm{q}$
(C p q
(D) $\sim p \wedge q$

The s temf $\Perp \mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{p})$ is equivalent to
[AIEEE 2008]
($\quad \mathrm{p} \rightarrow(\mathrm{p} \wedge \mathrm{q})$
(B) $\mathrm{p} \rightarrow(\mathrm{p} \leftrightarrow \mathrm{q})$
(C $\quad \mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$
(D) $\mathrm{p} \rightarrow(\mathrm{p} \vee \mathrm{q})$
1.3 Tautology, Contradiction, Contingency
28. Which of the following is not true for any two statements p and q ?
[Kerala PET 2007]
(A) $\sim[p \vee(\sim q)] \equiv \sim p \wedge q$
(B) $(p \vee q) \vee(\sim q)$ is a tautology
(C) $\sim(p \wedge \sim p)$ is a tautology
(D) $\sim(p \vee q) \equiv \sim p \vee \sim q$
29. The statement pattern $\mathrm{p} \wedge(\sim \mathrm{p} \wedge \mathrm{q})$ is
[MHT CET 2018]
(A) a tautology
(B) a contradiction
(C) equivalent to $\mathrm{p} \wedge \mathrm{q}$
(D) equivalent to $\mathrm{p} \vee \mathrm{q}$
30. $(p \wedge \sim q) \wedge(\sim p \wedge q)$ is a
[Karnataka CET 200.
(A) Tautology
(B) Contradiction
(C) Tautology and contradiction
(D) Contingency
31. Which of the following state ents a tautology?
', CE 009]
(A) $(\sim q \wedge p) \wedge q$
(B) $(\sim q \wedge p) \wedge(p \wedge \sim p$,
(C) $\quad(\sim q \wedge p) \quad(p \quad-p)$
(D) $\quad\left(p \wedge q^{\prime} \cdot\left(\sim\left(p \wedge L^{\prime}\right.\right.\right.$
32. The only statet t among the following i.e., a tautol oy 1 s
[AIEEE 2011]
(A) $A \wedge(A \backslash 3)$
(B) $\quad \vee(\mathrm{A} / 3)$
(C) $[\sim \quad \rightarrow \mathrm{B})] \rightarrow \mathrm{B}$
(D) $\quad \mathrm{B} \rightarrow[\mathrm{A} \wedge(\mathrm{A} \rightarrow \mathrm{B})]$
33. Whi of the following statement pattern is a to rogy?
[MHT CET 2017]
(A) $\mathrm{p} \vee(\mathrm{q} \rightarrow \mathrm{p})$
(B) $\sim q \rightarrow \sim p$
(C) $(\mathrm{q} \rightarrow \mathrm{p}) \vee(\sim \mathrm{p} \leftrightarrow q)$
(D) $\mathrm{p} \wedge \sim \mathrm{p}$
34. The following statement
$(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow[(\sim \mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{q}]$ is
[JEE (Main) 2017]
(A) A fallacy
(B) A tautology
(C) Equivalent to $\sim \mathrm{p} \rightarrow \mathrm{q}$
(D) Equivalent to $\mathrm{p} \rightarrow \sim \mathrm{q}$
35. The false statement in the following is
[Karnataka CET 2002]
(A) $\mathrm{p} \wedge(\sim \mathrm{p})$ is a contradiction
(B) $\mathrm{p} \vee(\sim \mathrm{p})$ is a tautology
(C) $\sim(\sim \mathrm{p}) \leftrightarrow \mathrm{p}$ is tautology
(D) $\quad(\mathrm{p} \rightarrow \mathrm{q}) \leftrightarrow(\sim \mathrm{q} \rightarrow \sim \mathrm{p})$ is a contradiction

1.4 Quantifiers and Quantified Statements Duality

36. Which of the following quantified statement is true ?
[MH CET 2016]
(A) The square of every real number is positive
(B) There exists a real number whose square is negative
(C) There exists a real number whose square is not positive
(D) Every real number is rational
37. If c denotes the contradiction then dual of the compound statement $\sim p \wedge(q \vee c)$ is
[MHT CET 2017]
(A) $\sim \mathrm{p} \vee(\mathrm{q} \wedge \mathrm{t})$
(B) $\sim p \wedge(q \vee t)$
(C) $\mathrm{p} \vee(\sim \mathrm{q} \vee \mathrm{t})$
(D) $\sim p \vee(q \wedge c)$

8
 1.5 Negation of compound statements

38. The negation of $(p \vee \sim q) \wedge q$ is
[Kerala (Engg.) 2011]
(A) $(\sim p \vee q) \wedge \sim q$
(B) $\quad(\mathrm{p} \wedge \sim \mathrm{q}) \vee \mathrm{q}$
(C) $\quad(\sim p \wedge q) \vee \sim q$
(D) $(p \wedge \sim q) \vee \sim q$
39. The negation of $\sim s \vee(\sim r \wedge s)$ is equivalent to
[JEE (Main) 2015]
(A) $\mathrm{s} \wedge \sim \mathrm{r}$
(B) $\mathrm{s} \wedge(\mathrm{r} \wedge \sim \mathrm{s})$
(C) $\mathrm{s} \vee(\mathrm{r} \vee \sim \mathrm{s})$
(D) $\mathrm{s} \wedge \mathrm{r}$
40. The Boolean expression $\sim(p \vee q) \vee(\sim p \wedge q)$ is equivalent to
[JEE (Main) 2018]
(A) p
(B) q
(C) $\sim q$
(D) $\sim p$
41. The negation of $\mathrm{p} \rightarrow(\sim \mathrm{p} \vee \mathrm{q})$ is
[Karnataka CET 2011]
(A) $\mathrm{p} \vee(\mathrm{p} \vee \sim \mathrm{q})$
(B) $\mathrm{p} \rightarrow \sim(\mathrm{p} \vee \mathrm{q})$
(C) $\mathrm{p} \rightarrow \mathrm{q}$
(D) $\mathrm{p} \wedge \sim \mathrm{q}$
42. Negation of $(\sim p \rightarrow q)$ is [MH CET 2009]
(A) $\sim p \vee \sim q$
(B) $\sim p \wedge \sim q$
(C) $\mathrm{p} \wedge \sim \mathrm{q}$
(D) $\sim p \vee c$
43. Negation of $(p \wedge q) \rightarrow(\sim p \vee r$,
[M. CE , nn=
(A) $(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \wedge \sim \mathrm{r})$
(B) $(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{p} \wedge \sim \mathrm{r})$
(C) $(\mathrm{p} \wedge \mathrm{q}) \wedge(\mathrm{p} \wedge \sim \mathrm{r})$
(D) $\quad(p \vee q) \vee(p$
44. Negation of $r \quad 1$ is
[MI. CET 2005]
(A) $\quad(\mathrm{p} \wedge \wedge, ~ \vee(\mathrm{p} \quad \mathrm{q})$
(B) $\quad(\mathrm{p} \wedge \quad \gamma) \vee(\mathrm{q}, \mathrm{p})$
(C) $\quad ท \wedge q \cdot(q \wedge p)$
(T, (r $) \vee(q \wedge p)$
T e s' ،ems, $\quad-(p \leftrightarrow \sim q)$ is
[JEE (Main) 2014]
(B a fallacy
(', equivalent to $\mathrm{p} \leftrightarrow \mathrm{q}$
(D) equivalent to $\sim \mathrm{p} \leftrightarrow \mathrm{q}$
45. Negation of the statement
'A is rich but silly' is
[MH CET 2006]
(A) Either A is not rich or not silly.
(B) A is poor or clever.
(C) A is rich or not silly.
(D) A is either rich or silly.
46. The negation of the statement given by "He is rich and happy" is
[MH CET 2006]
(A) He is not rich and not happy
(B) He is rich but not happy
(C) He is not rich but happy
(D) Either he is not rich or he is not happy
47. The negation of the statement " 72 is divisibı

2 and $3 "$ is
[Karnataka CET 201』」
(A) 72 is not divisible by 2 or 72 not divisible by 3 .
(B) 72 is divisible by 2 or 72 is divis a by 3 .
(C) 72 is divisible by 2 and 72 is visible by 3 .
(D) 72 is not divisible by and
49. Let $\mathrm{p}: 7$ is not greater an 4 and q : Paris is in France be two statemen ${ }^{+}$ни $\sim(p \vee$ the statement
'Kerala (Engg.) 2010]
(A) 7 is grea than 4 or aris is not in France.
(B) \rightarrow rea than 4 and Paris is not in France.
(C) 7 is nots ater $\tan 4$ and Paris is in France.
(D) 7 is great than 4 and Paris is not in France.
50. The $n \epsilon_{i}$:inn f the proposition "If 2 is prime, then is odd" is [Karnataka CET 2007]
(A) f 2 is not prime, then 3 is not odd.
(B) 2 is prime and 3 is not odd. 2 is not prime and 3 is odd.
(D) If 2 is not prime then 3 is odd.
51. The negation of the statement: "Getting above 95% marks is necessary condition for Hema to get admission in good college" is [MHT CET 2018]
(A) Hema gets above 95% marks but she does not get admission in good college.
(B) Hema does not get above 95% marks and she gets admission in good college.
(C) If Hema does not get above 95\% marks then she will not get admission in good college.
(D) Hema does not get above 95% marks or she gets admission in good college.
52. The negation of the statement "some equations have real roots" is
[MHT CET 2019]
(A) All equations do not have real roots
(B) All equations have real roots
(C) Some equations do not have real roots
(D) Some equations have rational roots
53. The negation of the statement "All continuous functions are differentiable"
[Karnataka CET 2019]
(A) Some continuous functions are differentiable
(B) All differentiable functions are continuous
(C) All continuous functions are not differentiable
(D) Some continuous functions are not differentiable
54. Let S be a non-empty subset of R. Consider the following statement:
p : There is a rational number $x \in \mathrm{~S}$ such that $x>0$.
Which of the following statements is the negation of the statement p? [AIEEE 2010]
(A) There is a rational number $x \in \mathrm{~S}$ such that $x \leq 0$
(B) There is no rational number $x \in \mathrm{~S}$ such that $x \leq 0$
(C) Every rational number $x \in \mathrm{~S}$ satisfies $x \leq 0$
(D) $x \in \mathrm{~S}$ and $x \leq 0 \rightarrow x$ is not rational

8 1.6 Switching circuit
55. When does the current flow through the following circuit.

[Karnataka CET 2002]
(A) p, q should be closed and r is open
(B) p, q, r should be open
(C) p, q, r should be closed
(D) none of these
56. If

then the symbolic form is
CE 2009]
(A) $\quad(p \vee q) \wedge(p \vee r)$
(B) $(p \wedge q) \vee(p \vee r)$
(C) $\quad(\mathrm{p} \wedge q) \wedge(r$
(D) $\quad(p \wedge q) \wedge r$
57. Simplified , gica, xpression for the following

Symbolic form of the given switching circuit is equivalent to \qquad [MH CET 2016]
(A) $\mathrm{p} \vee \sim \mathrm{q}$
(B) $\mathrm{p} \wedge \sim \mathrm{q}$
(C) \quad p $\leftrightarrow q$
(D) $\sim(p \leftrightarrow q)$

Relations between logical connectiv, and various operations on sets

Implication $(\rightarrow) \equiv$ Subset (\subset)

Conjunction $(\Lambda) \equiv \operatorname{Intersection(\Omega)}$

Double
Implication $(\leftrightarrow) \equiv \begin{aligned} & \text { Equality of } \\ & \text { two sets }(=)\end{aligned}$

The rules of logic and set theory go hand in hand.

Answer Key

Classical Thinking

Critical Thinking

1. (B)
2. (A)
3. (C)
4. (D)
5. (B)
6. (B)
7. (A) っ. (C)
(A) 10. (D)
8. (A)
9. (C)
10. (C)
11. (C)
12. (B)
13. (A)
14. (A^{\wedge} 18. ${ }^{\text {- }}$
15. (A)
16. (C)
17. (D)
18. (D)
19. (D)
20. (D)
21. (A)
22. (C)
23. J)
Q. (C,
24. (D) 30. (C)
25. (C)
26. (B)
27. (B)
28. (B)
29. (A)
30. (C)
31. D) 30 (A)
32. (C)
33. (A)
34. (C)
35. (A)
36. (D)
37. (B)
38. (D)
39. (C)
40. 1
41. (C)
42. (C)
43. (B)
44. (A)
45. (C)
46. (B)
47. (D)

Competitive Thinking

L. .tion Test

1. Which of the following not a atement in logic?
(A) Every set i a finı. set.
(B) $2+3$
(C) $x+\cdots=10$
(D) Zero i. complex number.
2. If $\rightarrow(\wedge r)$ is . alse, then the truth values of p, q and are ectively
(A) $\mathrm{T}, \mathrm{F}:$
(B) $\mathrm{F}, \mathrm{F}, \mathrm{F}$
$1,1, \mathrm{~F}$
(D) $\mathrm{T}, \mathrm{T}, \mathrm{F}$
3. T^{\prime} contrapositive of $(\sim p \wedge q) \rightarrow \sim r$ is
A) $\quad(p \wedge q) \rightarrow r$
(B) $\quad(p \vee q) \rightarrow r$
(C) $\mathrm{r} \rightarrow(\mathrm{p} \vee \sim \mathrm{q})$
(D) none of these
4. The converse of the statement, "If \sqrt{x} is a complex number, then x is a negative number" is
(A) If \sqrt{x} is not a complex number, then x is not a negative number.
(B) If x is a negative number, then \sqrt{x} is a complex number.
(C) If x is not a negative number, then \sqrt{x} is not a complex number.
(D) If \sqrt{x} is a real number, then x is a positive number.
5. The inverse of the proposition $(p \wedge \sim q) \rightarrow r$ is
(A) $\sim \mathrm{r} \rightarrow \sim \mathrm{p} \vee \mathrm{q}$
(B) $\sim \mathrm{p} \vee \mathrm{q} \rightarrow \sim \mathrm{r}$
(C) $\mathrm{r} \rightarrow \mathrm{p} \wedge \sim \mathrm{q}$
(D) $\sim \mathrm{p} \wedge \mathrm{q} \rightarrow \sim \mathrm{r}$
6. The negation of the statement $\forall x \in \mathrm{~N}, x+1>2$ is
(A) $\quad \forall x \notin \mathrm{~N}, x+1<2$
(B) $\exists x \in \mathrm{~N}$, such that $x+1>2$
(C) $\forall x \in \mathrm{~N}, x+1 \leq 2$
(D) $\exists x \in \mathrm{~N}$, such that $x+1 \leq 2$
7. Which of the following statements is a contingency?
(A) $(\sim p \wedge \sim q) \wedge(q \wedge r)$
(B) $\quad(\mathrm{p} \rightarrow \mathrm{q}) \vee(\mathrm{q} \rightarrow \mathrm{p})$
(C) $\quad(\mathrm{p} \wedge \sim \mathrm{q}) \rightarrow \mathrm{r}$
(D) $\quad(\mathrm{q} \rightarrow \mathrm{r}) \vee(\mathrm{r} \rightarrow \mathrm{p})$
8. Which of the following is a contradiction?
(A) $\quad(\mathrm{p} \wedge \mathrm{q}) \wedge(\sim(\mathrm{p} \vee \mathrm{q}))$
(B) $\mathrm{p} \vee(\sim \mathrm{p} \wedge \mathrm{q})$
(C) $\quad(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{p}$
(D) none of these
9. If p, q are true and r is a false statement, then which of the following is a true statement?
(A) $(p \wedge q) \vee r$ is F
(B) $\quad(p \wedge q) \rightarrow r$ is T
(C) $(p \vee q) \wedge(p \vee r)$ is T
(D) $\quad(\mathrm{p} \rightarrow \mathrm{q}) \leftrightarrow(\mathrm{p} \rightarrow \mathrm{r})$ is T
10. The dual of the statement
$\sim(p \vee q) \wedge[p \vee \sim(q \wedge \sim r)]$ is
(A) $\sim(\mathrm{p} \wedge \mathrm{q}) \vee[\mathrm{p} \wedge \sim(\mathrm{q} \vee \sim \mathrm{r})]$
(B) $(\sim p \wedge \sim q) \vee[\sim p \wedge(\sim q \vee r)]$
(C) $(\mathrm{p} \vee \mathrm{q}) \wedge[\sim \mathrm{p} \vee(\mathrm{q} \wedge \sim \mathrm{r})]$
(D) $\sim(\mathrm{p} \wedge \mathrm{q}) \wedge[\sim \mathrm{p} \wedge(\mathrm{q} \vee \sim \mathrm{r})]$
11. Consider the following statements:

P : Suman is brilliant
Q : Suman is rich
R : Suman is honest.
The negation of the statement " S ' is brilliant and dishonest iff suman is ris " car se expressed as
(A) $\sim \mathrm{P} \wedge(\mathrm{Q} \leftrightarrow \sim \mathrm{R})$
(B) $\sim(\mathrm{Q} \leftrightarrow(\mathrm{P} \wedge \sim \mathrm{R}))$
(C) $\sim \mathrm{Q} \leftrightarrow \sim(\mathrm{P} \wedge \mathrm{R})$
(D) $\quad \sim(\mathrm{P} \wedge \sim \mathrm{R}) \leftrightarrow \mathrm{Q}$
12. Which of the folle is tru.
(A) $\mathrm{p} \wedge \sim \mathrm{p} \equiv \mathrm{T}$
(B) $\mathrm{p} \vee \sim \sim=1$
(C) $\mathrm{p}-\equiv \mathrm{q} \rightarrow$.
(D) $p \rightarrow 4 \quad(\sim q) \rightarrow(\sim p)$
13. T^{\downarrow} folt ing c uit represent symbolically in 1 ic v en current flow in the circuit.

Which of the symbolic form is correct?
(A) $\quad(\sim p \vee q) \vee(p \vee \sim q)$
(B) $\quad(\sim p \wedge p) \wedge(\sim q \wedge q)$
(C) $(\sim p \wedge \sim q) \wedge(q \wedge p)$
(D) $\quad(\sim p \wedge q) \vee(p \wedge \sim q)$
14. Simplified form of the switching circuit given below is

(A)

(B)

(C)

(D)

15. State ent-1: $\sim(p \leftrightarrow \sim q)$ is equivalent to $p \leftrightarrow q$. .ement-2: $\sim(p \leftrightarrow \sim q)$ is a tautology.
(A) Statement-1 is true, statement-2 is true.
(B) Statement-1 is true, statement-2 is false.
(C) Statement-1 is false, statement-2 is true.
(D) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for statement-1.

Answers to Evaluation Test

1.	(C)	2.	(A)	3.	(C)	4.	(B)
5.	(B)	6.	(D)	7.	(C)	8.	(A)
9.	(C)	10.	(A)	11.	(B)	12.	(D)
13.	(D)	14.	(B)	15.	(B)		

2. (A)
3. (C)
4. (B)
5. (B)
6. (A)
7. (B)
8. (D)
9. (D)
10. (B)
11. (B)

MHL-H:H Based on XII Syllabus of MHT-CET

Q AVAILABLE SUBJECTS:
MHT - CET Triumph Physics
MHT - CET Triumph Chemistry
MHT - CET Triumph Mathematics
MHT - CET Triumph Biology

BUY NOW

Salient Features

- Extensive Coverage of Std. 12th Syllabus
- Exhaustive subtopic wise coverage of MCQs in accordance with the latest syllabus
- Inclusion of MCQs from previous year's question papers
- Evaluation test provided at the end of each chapter
mail@targetpublications.org

